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Preface

Dear Participants,

we are more than happy to host the 37th International Workshop on Statistical
Modelling in Dortmund, Germany! This is the second year to meet in person after
the COVID break, and we hope to have a wonderful time like we did last year in
Trieste.

This year we will have 54 contributed talks and more than 60 posters, and it was a
tough challenge to pick among the many excellent submissions we had! Thanks again
to the scienti�c committee for putting so much work into the selection process. But
we obviously also want to give our thanks to all the researchers, who contributed
with their great submissions and made it possible to put together such an excellent
set of presentations. Having a special focus on students is a tradition of the Statistical
Modelling Society, hence we are especially happy to welcome such a large number of
younger researchers contributing to the conference. We are already excited to �nd
out who will win the awards for best student paper, best student presentation and
best student poster! The Statistical Modelling Society furthermore awarded travel
grants to two students.

We will also have �ve great invited talks, from di�erent areas in statistics: Brian
Reich, Maria Iannario, Alexander Gerharz together with Matthias Kolodziej, Gillian
Heller and Simon Wood agreed to give keynotes at the workshop. Furthermore,
Andreas Bender and Fabian Scheipl will provide a short course about Piece-wise
Exponential (Additive) Models (PEMs / PAMs) before the conference starts.

As always, the IWSM is a one-track conference, leading to a familiar atmosphere
and to the possibility for communication between the di�erent �elds of statistical
modelling.

Looking back at all the years we were participating in great workshops, hosted at so
many di�erent universities and all the amazing people we got to meet there, we are
both humble and exited to welcome you all to enjoy the conference and your stay at
the river Ruhr area with its long tradition of coal mining and steal production, beer
brewing and, of course, its omnipresent football vibe.

Andreas Groll, Elisabeth Bergherr and Andreas Mayr

Dortmund, Göttingen and Bonn, July 2023
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Data science meets football

Alexander Gerharz1,2, Mathias Kolodziej2

1 TU Dortmund University, Germany
2 Borussia Dortmund, Germany

E-mail for correspondence: gerharz@statistik.tu-dortmund.de

Abstract: Over time, the world of Statistics and Data Science has more and more
found a way into the world of Sports. Professional football teams have started to
rely more and more on the results of statistical analysis and statistical models to
make decisions. One of the fields in which statistical analysis is used is about the
physical performance of players and their risk to get injured. A lot of metrics are
developed to express information found in the underlying data. Even though this
field has gotten more attention in recent years, some questions have not found
perfect answers yet and still need some more research regarding the statistical
methods used. One of these questions to answer is about the physical development
of a player. Can we give a definite answer if a player has statistically improved
without having a good estimation for a measurement error and a variance? Also,
another question to answer is about how to include rarely measured variables
into a statistical injury model. Can we include variables with lots of missing data
into our statistical models without being able to impute them properly?

Keywords: Sports Analysis; Injury Risk; Football; Statistical Modelling.

1 Data Analysis in Football

Professional football teams no longer rely on just the influence of the
coaches and a few number of medical personal to influence the performance
of the players in training and competitive matches. It is now common for
elite clubs to operate with a more diverse range of support staff, who fulfil
specialist roles related to the development of performance of both the in-
dividual, and the team (Drust, 2019).

Furthermore, football has undergone a significant transformation in re-
cent years: it has become more dynamic, intense and complex. As a result
of this development, however, football also entails a considerable risk of

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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injury. However, not only has the physical development of the game in-
creased rapidly, but the technological progress in professional football is
also impressive. New and complex technologies are finding their way into
professional football through advances in sports science and data analysis
(Seshadri et al., 2021). For this reason, there is an opportunity to better un-
derstand how biomechanical, physiological, and biochemical data relate to
injury risk and performance development. In addition, there is the opportu-
nity to use more advanced statistical approaches to better understand the
extent to which collected data can be translated into training-relevant de-
cisions. This will allow the multidisciplinary team to make more informed,
comprehensive, and precise decisions for training than ever before.

In order to optimize the training process in professional football and to min-
imize the risk of injury, it is first necessary to understand the manner and
magnitude in which a prescribed training dose produces a specific physio-
logical response (training dose-response relationship/fitness-fatigue model).
Due to the significant physiological and performance differences within a
team, ensuring an optimal training load for each player (individualization)
to maximize performance has become a critical part of daily monitoring
(Scott, Lockie, Knight, Clark, & de Jonge, 2013). Objective measurement
methods for monitoring external and internal load have become much more
accessible in recent years due to technological advances and provide a good
insight into external and internal responses to training load (Seshadri et
al., 2021). A reliable recommendation requires a standardized framework in
which collected data are organized, transformed, analyzed, and visualized
(Lacome, Simpson, & Buchheit, 2018). From a sport science perspective, it
is essential to understand when a change in a test procedure is significant
for assessing physical performance ability (e.g., hip muscle strength). To
do this, the measurement error of the variable must first be determined
and the smallest significant change must be identified. In addition, z-scores
or STEN scores are suitable for comparing and classifying a current mea-
sured value with historical measured values as part of an outlier analysis.
Time series analyses (trend analyses) using linear models can also be used
to assess the physical performance development of a player. More complex
machine learning procedures, such as the optimization of a decision tree
using the CART method, help to assess the risk of injury and to create
injury risk profiles (Kolodziej, Nolte, Schmidt, Alt, & Jaitner, 2021). With
the help of interpretable machine learning methods, rules can still be de-
rived from complicated models that have a high practical relevance.

As part of the decision-making process in the training process, the role
of sports science is to provide the multidisciplinary team with the right
information at the right time. Among the various components of effective
sports science support, three aspects are elementary:
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1. adequate understanding and analysis of the data, i.e. using only the
most relevant and useful metrics that have a direct impact on the
training process.

2. interactive, intuitive and informative reports (”simple but powerful)”
through measured visualization using business intelligence tools (e.g.
Tableau).

3. communication skills and personality traits that help communicate
data and reports to management, coaches, staff and players.

2 Data

In the field of physical performance, there are three main areas from which
we get data for our statistical analysis:

1. Medical data, which is provided to us by our doctors and physicians.
These contain data about the injuries and well-being of our players.

2. Monitoring data, which is measured on a regular basis about muscle
strengths, jump heights, etc. Also, data from questionaires about the
well-being of the players are collected here.

3. GPS data, which is collected by our players wearing GPS sensors or
GPS data provided by the league.

The medical data contains a lot of information about the type of injuries
that the players had and also about the treatments that were given. Even
though this contains a lot of interesting information, as it is very individual
for each and every type of injury it is still a challenge how to include them
into a nice statistical analysis regarding the risk of an injury. However, to
roughly assess what type of injuries the club has to deal with on a regular
basis this data is used.

The monitoring data contains a lot of different types of information as dif-
ferent measurements are done over the course of a season. We use this kind
of data to not only assess the physical development of the players, but also
to screen the players regarding risk factors that might lead to injuries. First
of all, the preparation phase of a new season starts with a performance
measurement phase in which all players are tested regarding their body
measurements, strengths, balances, stamina, etc. As this is a very time
consuming process, usually this needs multiple days of time. Within the
season there are some measurements that are performed more frequently
(e.g. hip muscle strength, questionaires) and some that are measured less
frequently (e.g. stamina) as they might be very taxing for the body or just
take too long to measure them frequently. Also, sometimes measurements
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are performed because of a previous injury of a specific player, so we might
also have types of measurements for just one specific player only.

The GPS data contains all the information regarding the players moving
on the pitch, even in training. The measurement is done with very precise
instruments measuring on a frequency of about 100Hz (100 measurements
per second). From this data, the running distance, the speed and the ac-
celeration can be derived. All the information can then be aggregated into
metrics regarding a whole training session or a complete match as we are in-
terested in the complete running distances (with respect to different speed
intervalls), the highest speed a player had within the session or the number
of fast accelerations and fast decelerations a player had. As this kind of
data is collected in every training session on the pitch and also in every
match it is very helpful to measure the physical development of players and
how taxing the training sessions and the matches are for the players.

3 Data Analysis

3.1 Basic Analysis

One of the biggest challenges of performing statistical analysis in a pro-
fessional football club is to break all the information down into simple
graphics and simple numbers, which other staff members can understand.
Even though good communication can help, graphics and numbers should
always be presented in a way, which other people could understand on their
own. For this purpose, lots of information is presented in very basic ways
(e.g. monitoring data with dot and line plots for a specific measurement
taken multiple times over a long period). Also, it is of interest to detect
trends within the physical performance of individual players over a specific
period. To make this as understandable as possible just basic linear models
are used to give a trend and also a statistical significance.

3.2 Evaluation of Physical Performance

Another one of the challenges in the statistical analysis comes with the na-
ture of the data collection process. All measurements for a specific player
have one starting point in time. This might be due to the fact that the
measurement process has started then or because the player just joined the
team on this point of time. Let’s assume we measure a new kind of leg
strength. Even if we have not measured this strength now, a player would
have always had some kind of value for this measurement (see Figure 1, top
left). If we would have started at the exemplary measurement timepoint 1,
we can see in the top right that the player would not have a very significant
development regarding this leg strength. In the bottom left of this Figure,
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FIGURE 1. Exemplary measurements and trend calculations.

we do not have this value up until a very long time ago, but we just have
the last 6 measurements and in the bottom right just 4 measurements.
In the end, our conclusion can be extremely different depending on when
we started to measure. One can also easily see that the computed trend
will differ if, e.g., one measurement in between was skipped as with a low
amount of data points each one can have a huge impact on the computation
of a trend. This kind of issue can be addressed by good communication as,
aside of giving information about the trends, we also need to communicate
if we have enough data points to be sure of the trends or if the calculation
of the trends are not significant.

Using Figure 1 as an example again, there is another challenge, which oc-
curs on a daily basis. After taking a new measurement, it is of interest if it
was an improvement, a stagnation or if the player has gotten worse (Paton
& Hopkins, 2005). Of course, just checking if the value was higher or lower
than the last measurement is a valid solution, but all measurements have
some kind of a measurement error and we need to take this into account
(Hopkins, 2004). For some measurements, this error also has the poten-
tial to vary over time and can be very different regarding the athlete. The
estimation of this error is hard to compute in reality. If for each measure-
ment we would like to estimate the variance of the measurement, we would
need repeated measurements for each athlete. As this might be feasible for
some measurements, stamina values are a great counter example. Stamina
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measurements take a lot of time and are very taxing for the body, so even
if a player would agree to repeatedly do stamina runs the measured vari-
ance would be bloated due to fatigue and decreasing ability. The resulting
variance would not be representative for the error of the first measurement.

In Sports Science there exists an approach to estimate this variance as it is
simply replaced by the variance of the past measurements of a player. While
this actually gives a plausible variance, as the underlying player ability for
the measurement varies over time the variance of a single measurement gets
bloated by the variance of the underlying player ability.

3.3 Injury Risk Model with Missing Data

A completely different challenge arises when using monitoring data in sta-
tistical injury risk modelling. While GPS data is collected on a daily basis
with almost no gaps at all monitoring data is collected with a much lower
frequency, which leads to a lot of missing values in the covariates for an in-
jury risk model. While some monitoring variables might not differ as much
over time and can be imputed with a last-observation-carried-forward ap-
proach for a certain time, others can vary a lot on a daily basis and can
not be imputed as good. One of our monitoring variables is Creatin Kinase
(CK), which is a blood measurement value and indicates how badly the
muscle cells of a player are damaged. If we measure this every day, then
we can also see how well a player regenerates, so it is not just the absolute
value, but also the change over time that contains important information.
Missing values here can not just be imputed, because that would create a
false impression of the regeneration process of a player. Also random events
like tackles or bumping into each other can significantly impact this value,
which also makes it hard for imputation.

In the end, we will end up with a data set in which some of our covariates
contain a very high ratio of missing data. Most of the classical statisti-
cal models can not deal with missing data in the modelling process, which
gives us basically four options. We could either just include all full observed
observations, which will be less then 0.1% of all data points. The main prob-
lem here is that we would also need to have fully observed data points for
our predictions, which in reality we rarely have. Another approach would
be to fit one model for each combination of the covariates and include as
much observations as possible for these kind of models, but over the course
of a season there are a lot of different monitoring tasks, which are per-
formed, which will lead to lots of different models. This might also lead
to incomparable outputs. As mentioned before, imputation is hard, but we
could try our best with different imputation approaches. It is possible to
impute the missing values for all variables, but we could also narrow our
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data set down to the variables that are easy to impute and just exclude the
others.

The last option is to use methods that actually allow the underlying data
set to contain missing data. One of these approaches could be a single de-
cision tree using the CART method and allowing surrogate splits (Lewis,
2000). A surrogate variable functions as a replacement of a used splitting
variable. After determining the best split of the data in a specific node,
possible splits with other covariates are looked at, which can seperate the
data as similar as possible. If now the variable that is used for the split is
missing then the best surrogate split variable can be used as a substitute.
If this variable is also missing then the next best substitute can be used
and so on. This introduces a form of error within the model, but allows us
to deal with missing data. Another approach could be a k-nearest-neighbor
approach using the Gower’s distance (Gower, 1971). Here each variable is
evaluated on its observed range of values and produces a difference be-
tween 0 and 1. In the end an average distance is computed. If one of the
two observations for which the distance is measured has a missing value for
a specific variable, then this variable is excluded for the computation of the
average distance. Even though, here the predictions are done with varying
information and can result in different levels of confidence, we always in-
clude as much information as possible to determine the nearest neighbors
to evaluate the injury risk for a new observation.

4 Conclusion

In a professional football club lots of different kinds of data are collected
from a lot of different data sources and methods from the field of Statistics
and Data Science are used to extract as much information as possible from
these sources. The work of a Data Analyst with a focus on the physical
performance of the players contains a lot of different questions that need to
be answered with this kind of data. With the nature of the data collecting
process and the daily necessities in a professional football club a very spe-
cific demand of Statistical methods arises. While some of the tasks can be
solved with basic methods others need very specific sometimes taylor-made
methods to provide valuable information.

It is a very difficult task to evaluate the improvement of a player with only
a few datapoints, which makes the computation of trends very unstable.
Also, when comparing different measurements of a player, for some tasks it
is easy to account for measurement errors for some tasks it is actually an
(almost) unsolvable problem. There exist approaches to roughly estimate
the measurement errors, but these estimations are usually giving very gen-
erous upper bounds.
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Another arising demand is for methods to assess the risk of an injury which
allow for a high ratio of missing data. While some of the covariates for
injury risk models are collected very frequently others are collected very
rarely, which leads to big gaps in the data. Modelling methods that can
actually account for missing data are thus in demand to not loose to much
information.
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Abstract: Ordinal regression models are commonly implemented for analysing
an ordinal response variable as a function of some explanatory covariates. The
Maximum Likelihood (ML) estimators are used for estimating the unknown pa-
rameters of these models but gross-errors in the response, specific deviations due
to the respondents’ behaviour, and outlying covariates may affect their reliabil-
ity. The paper emphasises that the choice of the link function can influence the
robustness of inferential methods. In addition, robust M estimators are proposed
as an alternative to ML estimators producing more reliable results.
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1 Introduction

In recent years the analysis of ordinal response data has become a popular
topic in mainstream research. Such data occur in many areas of scientific
study, for example in psychology, sociology, economics, medicine, political
science and many other disciplines, where the final response of a subject
belongs to a finite number of ordered categories. Pioneering work in this
field was carried out by McCullagh (1980), who advocates the use of a latent
continuous variable that drives ordinal responses based on some unknown
cut-off. This method has become popular because it allows us to treat the
ordinal response pattern within the framework of the Generalised Linear
Model (GLM) (Nelder and Wedderburn, 1972).
In this area, the false conjecture that the bounded support of the response
variable (integer values between 1 and m) cannot generate anomalous data
which jeopardize the reliability of the estimators and of the related tests
has discouraged for long the analysis of the robustness of the inferential
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methodologies in contrast with the rich literature on robustness for contin-
uous and specific discrete data.
When ordinal data come from surveys, it has been recognised that respon-
dents may thoughtfully or unconsciously choose the ‘wrong’ category. This
phenomenon, in addition to the occurrence of gross errors (the probability
of which is never negligible) or the irregular behaviour of some respondents,
produces a contamination of the assumed distribution of the model, which
may alter the reliability of the Maximum Likelihood (ML) estimators and
of the related test procedures. Only lately studies have been carried out to
improve the properties of estimators and tests in this field.
Lack of robustness for the ML estimators in the ordinal logistic regres-
sion model has been studied for instance in Croux et al. (2013), Iannario
et al. (2017), and recently in Iannario and Monti (2023a, 2023b). Croux
et al. (2013) studied a weighted maximum likelihood (WML) estimation
method under the logit link function, through different choices of the weight
function. Iannario et al. (2017) proposed a general M estimation procedure
with the objective function chosen as a weighted likelihood function under
different considerations of link functions. Unlike the approaches of Croux et
al. (2013), where the weights are the function of robust Mahalanobis type
distances, Iannario et al. (2017) considered Huber’s weights for different
link functions. They pointed out that a good weight function essentially
controls the influential observations with respect to some reference mod-
els. In Iannario and Monti (2023b) robust estimation for unordered and
ordered response models based on the logistic link function has been de-
veloped extending the results of Iannario et al. (2017) and Scalera et al.
(2021) on the proportional odds model. In addition in Scalera et al. (2021)
the impact of the chosen link on the estimators has been discussed, since
contrasting results obtained by the links can highlight the occurrence of
anomalous responses.
The paper summarises the main findings on the topic, analysing some ro-
bustness issues and diagnostic procedures for ordinal response models and
exploiting some properties of the M estimator from Iannario et al. (2017),
Iannario and Monti (2003b) which are able to produce reliable inference in
case of data contamination. The contribute also provides some suggestions
for new research topics.
The paper is organized as follows: the next Section deals with a brief
overview of the methods based on the GLM framework for ordinal re-
sponse models with special emphasis on the role of generalized residuals.
Section 3 gives some insights on the robustness inference and highlights that
M estimation can make a difference in fitting the models when anomalous
responses occur. Diagnostic procedures along with empirical evidences are
illustrated in Section 4. Concluding remarks have been made in Section 5.
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2 Maximum likelihood inference

Let Y be a m-category ordinal response variable which represents the dis-
crete measurement of an underlying (continuous) latent variable Y ∗

i such
that, for any i-th subject,

αj−1 < Y ∗
i ≤ αj ⇐⇒ Yi = j , j = 1, 2, . . . ,m , m > 2 ,

and −∞ = α0 < α1 < . . . < αm = +∞ are the cut-off points in the
continuous support of the latent variable Y ∗.
The i−th copy of Y ∗ linearly depends on p(≥ 1) covariate(s) through
xi = (xi1, . . . xip) as Y ∗

i = xiβ + ϵi, i = 1, 2, . . . , n, where ϵi ∼ G(·),
which is assumed to have a probability density function g(·). If G(·) is the
standardized normal cumulative distribution function (cdf) we have the
probit link, while when G(·) is the logistic cdf we have the logit link. An
alternative choice considered in the literature is the inverse of the cdf of the
extreme values (or log-Weibull) distribution (Agresti, 2010) but it is also
possible to consider the Cauchy link related to Cauchy cdf , rarely chosen,
and even more rare the Student (or Gosset) link for Student cdf (Albert
and Chib, 1993).
Under the above parametric set-up, the probability mass function of the
cumulative link model is

Pr(Yi = j | xi) = Pr(αj−1 < Y ∗
i ≤ αj) (1)

= G(αj − xiβ)−G(αj−1 − xiβ), j = 1, 2, . . . ,m.

Let θ = (α′,β′)′ where α = (α1, . . . , αm−1)′ and β = (β1, . . . , βp)
′, then

θ ∈ Ω(θ); the latter is an open subset of Rp+m−1. Given an observed
random sample (yi,xi), for i = 1, 2, . . . , n, let y = (y1, y2, . . . , yn)′ and let
X be the matrix whose rows are given by x1,x2, . . . ,xn. The log-likelihood
function (McCullagh, 1980) of the sample is

ℓ(θ;y,X) =

n∑
i=1

m∑
j=1

I[yi = j] logPr(Yi = j|xi) =

=

n∑
i=1

m∑
j=1

I[yi = j] log [G(αj − xiβ)−G(αj−1 − xiβ)]

where I[ω] is the indicator function which takes value 1 if ω holds and 0 oth-

erwise. The score function is s(θ;y,X) =

n∑
i=1

s(θ; yi,xi) where s(θ; yi,xi) =

(sα1
, . . . , sαm−1

, β1, . . . , βp)
′. Here,

sαs(θ; yi,xi) =


−g(αs − xiβ)

G(αs+1 − xiβ) −G(αs − xiβ)
if s = j − 1

g(αs − xiβ)

G(αs − xiβ) −G(αs−1 − xiβ)
if s = j

0 if s ̸= j − 1, j,

(2)
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sβr
(θ; yi,xi) = −

m∑
j=1

I[yi = j]eij(θ)xir (3)

and the quantities eij(θ) in (3) are the generalized residuals (Franses and
Pap, 2004, Iannario and Monti, 2023a)

eij(θ) =
g(αj − xiβ)− g(αj−1 − xiβ)

G(αj − xiβ)−G(αj−1 − xiβ)
, i = 1, 2, . . . , n ; j = 1, 2, . . . ,m .

(4)
The score function for the whole sample, related to the scalar regression
coefficient βr, is given by

n∑
i=1

sβr
(θ; yi,xi; ) = −

n∑
i1

m∑
j=1

I[yi = j]eij(θ)xir (5)

which has the same structure of the Gaussian (ML) equation in the linear
model. Hence the combination of eij(θ) and xi determines the impact of the
observations on the estimators. This point has been extensively discussed
in Iannario and Monti (2023a) where it is stressed that outlying covariates
induce both the numerator and denominator of (4) to approach 0 and thus
the final value of residuals depends on the speed of convergence of the two
terms. This last point leads to suggest that the link function be chosen
in such a way eij(θ) are bounded (see also Scalera et al. 2021, for further
details).
Lastly, the generic term of the information matrix I(θ,X) for a single
observation, conditionally on X = x, is given by

Ils(θ,x) = EY

{
−∂

2 ℓ(θ, Y,X)

∂ θl ∂ θs

∣∣∣∣X = x

}
= −

m∑
j=1

I[Y = j]
∂2 ℓ(θ, Y,x)

∂ θl ∂ θs
Pr(Y = j|x),

for (l, s) = 1, 2, . . . ,m+ p− 1, and the elements of the unconditional infor-
mation matrix I(θ) are given by Ils(θ) = EX

{
Ils(θ,X)

}
.

3 Robust inference

A robust estimation requires the influence function of the estimator to
be bounded (Hampel et al., 1986; Huber and Ronchetti, 2009). When the
ML estimators are used, the influence function is proportional to the score
function, i.e. IFML(y,xi;θ) = I(θ)−1s(θ; y,xi) for y = 1, 2, . . . ,m. Con-
sequently the sources of unboundness of the score functions should be in-
vestigated.
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By focusing on (3) two important sources of unboundness appear: the re-
gressors and the generalized residuals. Outlying regressors can occur any-
time the covariates include unlimited variables. Large generalized residuals
can be produced by two kinds of events: anomalous responses, as shown by
Iannario et al. (2017, Section 2, example 1), and by outlying covariates (as
reported in Iannario and Monti (2023b), Iannario et al. (2023)). As men-
tioned the impact of a large xi on eij(θ) is filtered through G(·) and may
be limited by an appropriate choice of the link function.
The latter choice is indeed crucial, because it determines also the behavior
of the threshold score function (2). This choice is extensively discussed
in Iannario et al. (2017, Section 3) where the nice robustness properties
of the logit link, which is generally the most recommended and used, are
emphasised.
For the cases links different from the logit one are applied or outlying
regressors may occur, Iannario et al. (2017) propose an M estimator which

is the implicit solution θ̂M of

n∑
i=1

ψ(yi,xi; θ̂M ) =

n∑
i=1

s(θ; yi,xi)w(yi,xi;θ)− a(θ) = 0, (6)

where a(θ) = E
{
s(θ;Y,X)w(Y,X;θ)

}
and this term is required to achieve

Fisher consistency. The weights w(yi,xi;θ) in (6) are designed to down-
weight outlying observations in order to control their impact in the estima-
tion. Of course, if w(yi,xi;θ) ≡ 1 then a(θ) ≡ 0 and ψ(yi,xi;θ) coincides
with s(yi,xi;θ), by displaying the ML estimators as a special case of M

estimators. Moreover, let M(θ, ψ) = −E
{
∂

∂ θ
ψ(Y,X;θ)

}
, the influence

function of the M estimator is

IF (y,xi;ψ) = M−1(θ, ψ)ψ (y,xi;θ) , for y = 1, 2, . . . ,m and xi ∈ Rp .

The influence function is bounded if ψ(.) is bounded, and this goal is
achieved by choosing suitable weights.
To get an insight on what is an appropriate weight function, the attention
should be focused on (3) which, as remarked in Section 2, recalls the nor-
mal equation in the linear model. If a large xi is associated with a large
generalized residual eij(θ), the corresponding statistical unit will have a
dominating role in (5) when determining the estimate of the parameter. If
instead a large generalized residual is associated to a small xi or viceversa a
large xi is associated to a small eij(θ), then the impact of anomalous data
in the estimation process is limited. In other words, observations character-
ized by a large product eij(θ)xi are to be considered and treated as leverage
points in an analogous fashion to what happens in the linear model.
Consequently the Huber weights (Hampel et al., 1986) are proposed, which
are non-increasing functions of the magnitude of both the residuals and
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the covariates, leading to w(yi,xi,θ) = min(1, c/

m∑
j=1

I[yi = j] | eij(θ) |

∥xi∥), where ||xi|| is the norm of the covariates which needs to be based on
robust estimators of location and scale and c is a suitable tuning constant.
The value of c should be chosen so that the loss of efficiency incurred by
M estimators, with respect to the ML estimators, does not exceed a given
threshold (say 5% or 10%) when there is no contamination in the data.
On the basis of a thorough investigation Iannario et al. (2017) suggest an
appropriate values of c which vary roughly between 1 and 2 according to the

trace criterion, whereas in Iannario and Monti (2023b) c =
√
χ2
p,ξ where

χ2
p,ξ is the ξ-th percentile of the χ2

p distribution.
In general we need small values of c for greater efficiency under the model
and large values of c for greater stability away from it. The researcher usu-
ally does not know, a priori, the amount of contamination in the data. So
a data driven selection of the ‘optimal’ tuning parameter is a remarkable
topic. Among alternative existing approaches Warwick and Jones (2005)
choose the optimum data-based tuning parameter by constructing an em-
pirical version of the mean square error and minimizing it over the tuning
parameter.
Croux et al. (2013) instead proposed alternative M type estimators with
similar residuals but weights depending only on the covariates. This ap-
proach is also pursued in Iannario et al. (2023) where the weights are a
decreasing function of ∥xi∥ leading to the simplified version of w(yi,xi) =
min(1, c/||xi||). When the tuning constant c increases the M estimators ap-
proach the ML estimators, whereas when c decreases extreme design points
are strongly downweighted. The square of the Mahalanobis distance ||xi||2
can be compared with the percentiles of a χ2

p distribution. These weights
have the advantage that they are calculated only once at the beginning of
the estimation process and do not have to be updated.
Continuing on with the inferential aspects the asymptotic variance-covariance
matrix of the M estimator θ̂M is

V (θ, ψ) = M−1(θ, ψ)Q(θ, ψ)M−1(θ, ψ),

where Q(θ, ψ) = E
{
ψ(Y,X;θ)ψ(Y,X;θ)′

}
. It can be estimated using the

corresponding sample statistics M(θ, ψ) and Q(θ, ψ) (cfr Iannario et al.
2017). Under general regularity conditions (Huber, 1981), the M estimator

θ̂M is asymptotically normal, i.e.

n1/2
(
θ̂M − θ

)
→ N(0,V (θ, ψ)) .

Finally robust testing procedures may be performed by means of a t-type
statistics. Under the null Hr

0 : βr = 0, for r = 1, 2, . . . , p,

tr =
(β̂Mr − βr)

V̂ rrβ
−→ N(0, 1).
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HereV̂ rrβ is the r-th element on the diagonal of V̂β which is the submatrix

of Vψ related to regressors and β̂Mr is the r-the element of the M estimator

β̂M of β.

4 Real Data Analysis

The red wine quality data (https://archive.ics.uci.edu/ml/datasets/
wine+quality) (Cortez et al. 2009) from the UCI Machine Learning Repos-
itory, contain physicochemical (quantitative covariates) and one sensory
(the ordinal one) variables referring to white variants of the Portuguese
‘Vinho Verde’ wine. The ordinal categorical response variable with values
ranging in {1, 2, . . . , 6} is reported in Figure 1 whereas Figure 2 shows the
boxplots of the continuous covariates where various outlying points appear.
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FIGURE 1. Frequency distribution of the ordinal variable Y .
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FIGURE 2. Boxplot of citric acid (first panel), residual sugar (second panel),
chlorides (third panel), sulfur dioxide (fourth panel).

The tuning constant of the M estimators is computed as c =
√
χ2
4,0.7 =

2.209, since there are four continuous covariates; it produces a limited loss
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of efficiency in case of pure data (Iannario and Monti, 2023b). The Min-
imum Covariance Determinant estimators, which has a high breakdown
point, have been applied for the estimators µ̃X and Σ̃X that appear in
the Mahalanobis distance given for the norm of the regressors. To simplify
the analysis, the logit link is considered, bearing in mind that the score
functions (2) of the thresholds are bounded and the generalized residuals
vary within (−1, 1).
The ML and the M estimates with weights depending on the covari-
ates and on the residuals (similar results are obtained with M estimates
with weights depending only on the covariates) in Table 1 are compared
with the estimates from the ML estimator θC related to the ‘clean sam-
ple’, i.e. a sample obtained by removing the statistical units correspond-
ing to the outliers (whose norm is higher than χ2

4,0.95) replicating what
was done in Iannario and Monti (2023b). The distance can be computed

as D(θ̂, θ̂C) =
{

(θ̂ − θ̂C)T V̂ (θ̂C)−1(θ̂ − θ̂C)
}1/2

where V̂ (θ̂C) is the es-

timated variance-covariance matrix of θ̂C . The ML estimate of residual
sugar coefficient is not significant. In contrast the robust M estimates co-
efficients are all significant, since their standard errors are considerably
smaller. Furthermore, the distance from the ‘clean sample’ estimates are
D(θ̂ML, θ̂C) = 4.314 and D(θ̂M , θ̂C) = 2.088. The former is larger than
the latter.

FIGURE 3. Left panel: Boxplots of the weights for each category of the response
(the width of the box is proportional to the observed frequency of the correspond-
ing category). Right panel: Residuals versus covariates (blue diamonds correspond
to the influential data identified in the left panel).

Figure 3 (left panel) shows the boxplots of the weights for each category of
the response. The weights associated to the statistical units display where
M estimation applies a severe downweighting (i.e. Yi = 1 has a larger
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percentage of downweighted observations).
Figure 3 (right panel) presents the scatter plot of the residuals (derived
from M estimation) versus the robust norm ||xi||. The area delimited by
the dashed lines incorporates data which are not severely influential. The
influential observations are located outside this area and are characterized
by a large product eij(θ)||xi||.

TABLE 1. Estimates for the model for wine data.

ML estimation Robust estimation Clean data estimation
Coef St.Err t-stat Coef St.Err t-stat Coef St.Err t-stat

α1 -5.762 0.354 -16.294 -6.495 0.433 -15.016 -6.709 0.437 -15.353
α2 -3.885 0.202 -19.238 -4.294 0.277 -15.493 -4.693 0.288 -16.275
α3 -0.632 0.148 -4.263 -1.054 0.212 -4.975 -1.390 0.244 -5.694
α4 1.563 0.157 9.977 1.215 0.218 5.587 0.837 0.245 3.409
α5 4.273 0.276 15.503 3.899 0.325 12.003 3.575 0.338 10.571
β1,citric acid 2.599 0.263 9.900 2.602 0.282 9.236 2.583 0.270 9.554
β2,residual sugar 0.051 0.036 1.423 0.101 0.052 1.943 0.118 0.063 1.860
β3,chlorides -7.236 1.096 -6.604 -13.898 2.134 -6.514 -18.260 2.628 -6.949
β4,sulfur dioxide -0.014 0.002 -8.827 -0.014 0.002 -8.059 -0.015 0.002 -8.898

5 Conclusions

The lack of robustness in the likelihood based inferential procedures poses
a major challenge in modelling ordinal response data. Here we explore a
summary of alternative robust methodologies to estimate the parameters
in such statistical models. The theory developed for the M estimators lim-
its the impact of anomalous data on the fitted model, leading to a proper
assessment of the effect of covariates. Theoretical results find a nice appli-
cation in this article. Further studies concern performance indices for model
comparison in order to achieve robustness of Akaike Information Criterion
and the study of the impact of imputation methods on the outliers when
missing values are analysed. Taking into account all possible challenges,
we believe that the use of the estimators presented in the ordinal response
models provides a useful tool for scientists working in the context of ordinal
data.

Acknowledgments: I want to thank the IWSM2023 organizers and all
the collaborators involved in the works reviewed in this short paper: Anna
Clara Monti above all, with whom I co-authored most of the papers on the
subject, and Domenico Piccolo, Elvezio Ronchetti, Valentino Scalera.
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Back to the future: model what you measure
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Abstract: The evolution of statistical modelling has historically been con-
strained by the practical limitations of computation. As increased mathematical
complexity often implies more intricate computation, over time statistical models
have grown both mathematically and computationally more complex; but para-
doxically sometimes conceptually simpler models present more computational
challenges than complex ones. I shall be discussing two well-known examples of
this phenomenon.

Keywords: distributional regression; logistic regression; relative risk regression;
proportional hazards regression; Cox model.

1 Introduction

Statistical models are necessarily abstractions of the real world (“all models
are wrong”). In the physical sciences the abstraction may be rather close
to reality, when the phenomenon under study is well understood; in other
areas such as social sciences the abstraction may be more speculative. In
all cases, we observe data; and we formulate a statistical model to describe
the data-generating mechanism, which is a mathematical abstraction of the
real process.

When the purpose of the modelling is for prediction, the model’s predictive
ability is all that matters. Interpretability is not important, and in fact the
model may be a “black box” (as in machine learning). However when the
purpose of the modelling is exploratory or confirmatory, whatever the ex-
tent of the abstraction, it is generally accepted that the model should be
as simple as possible while retaining interpretability and usefulness.

Before going further, we need to define what we understand by “simple”,
and to do this we need to distinguish between simplicity and mathematical

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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convenience. By simplicity we mean closeness to the truth of the data, or
the evidence. For example, consider that we observe occurrences of a binary
event. The most natural summary is the relative frequency, interpreted as
a probability. Our contention is that this is as close as we can get to the
evidence; and because it is close to the data, it is easily interpreted. We
therefore regard the relative frequency or probability as a simple abstrac-
tion of the data. Another commonly-used summary of such data is the odds,
defined as the relative frequency of occurrences to non-occurrences. This
is not an intuitive concept, yet because of its mathematical convenience
(discussed below), it is ubiquitous in the analysis of binary and categorical
data. Despite the mathematical and computational convenience of statisti-
cal models for the odds, the odds is a complex abstraction of the data.

2 Binary outcomes

We consider the simplest situation of modelling a binary outcome as a
function of a binary predictor (or risk factor or exposure or treatment allo-
cation). The predictor at level 0 generally means the risk factor or exposure
is absent, or the treatment allocation is to control; 1 means presence or ac-
tive treatment. Standard notation and terminology is given in Table 1.

TABLE 1. Binary data.

Event occurrence
No Yes Event rate

Predictor 0 a b R0 = b/(a+ b)
1 c d R1 = d/(c+ d)

The event rates R0 and R1, for the predictor at levels 0 and 1, respectively,
are alternatively referred to as risks of the event. To quantify the discrep-
ancy between the event rates, two natural extensions are to define relative
risk and risk difference:

� relative risk: RR =
R1

R0
=
d/(c+ d)

b/(a+ b)

� risk difference: RD = R1 − R0 = d/(c+ d)− b/(a+ b)

both of which are intuitive quantities, in that, for example, a doubling of
risk or a risk difference of 10% are concepts close to the data and unlikely
to be misinterpreted. Clearly RR = 1, or equivalently RD = 0, indicate no
difference in the risk for the predictor present or absent; there are simple
statistical tests for this hypothesis.
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We would generally want to extend the analysis of Table 1 to include mul-
tiple predictors, i.e. multiple regression with a binary outcome:

y|x ∼ Bernoulli(p); g(p) = xTβ .

� relative risk regression model:
log(p) = xTβ ⇒ exp(βj) is the relative risk

� risk difference regression model:
p = xTβ ⇒ βj is the risk difference

for a binary predictor xj , or for a 1-unit increase in xj , ceteris paribus. So
by varying the link function g(·), we easily define regressions on the scale of
relative risk and risk difference. And yet these regressions are infrequently
used in the analysis of binary data. Estimation of the relative risk and risk
difference regression models poses problems due to the fact that the log
and identity link functions do not guarantee constraint of the fitted values
p̂ to (0, 1), as required. Constrained optimisation for maximum likelihood
estimates (MLEs) is intricate but the problems have largely been solved,
using EM-type algorithms and an adaptive barrier approach which achieve
stable convergence (Donoghoe and Marschner 2018).

Much better known for the analysis of binary outcomes is logistic regression,
which is based on the logistic link function, giving effects on the odds:

log
(

p
1−p

)
= xTβ ⇒ exp(βj) is the odds ratio (OR)

As is well known, the logistic link function is the canonical link for the
Bernoulli distribution, so importantly delivers estimates p̂ ∈ (0, 1) (as will
the inverse of any sigmoid function). Computation of MLEs is straightfor-
ward; logistic regression is available in all statistical software packages and
is the go-to method for binary outcome data. However the odds scale for
regression effects is far less intuitive than relative risk, discussed by mul-
tiple authors (e.g. Knol et al 2011). OR and RR are approximately equal
when R0 is close to zero, or when RR < 1. However when RR > 1 and R0

is not close to zero, OR exceeds RR, increasingly so as R0 increases. So,
for example, when R0 = 0.4 and R1 = 0.8, RR = 2 and OR = 6. While
both measures indicate a substantial increase in risk, and would lead to
qualitatively the same conclusion, OR = 6 is a far more alarming statistic
than RR = 2, being understood as “six times the risk”. In general the use
of logistic regression will lead to qualitatively the same conclusions as rela-
tive risk regression, so in that sense its results are not misleading, but they
are misleading if the quantification of the increase in risk is important. In
summary, logistic regression is mathematically and computationally con-
venient, but is a complex abstraction of the data.

The left panel of Figure 1 shows the results of a search on PubMed Central
(an archive of biomedical and life sciences journal literature) of the terms
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FIGURE 1. Number of journal articles on PubMed Central containing the search
terms. Left panel: ‘logistic regression’, and (‘relative risk regression’ or ‘log-bino-
mial regression’ or ‘log binomial regression’). Right panel: (‘proportional hazards
regression’ or ‘cox regression’), ‘Kaplan-Meier’, and (‘accelerated failure time’ or
‘parametric survival’). The y-axes are on the log scale.

‘logistic regression’, and (‘relative risk regression’ or ‘log-binomial regres-
sion’ or ‘log binomial regression’), confirming the ubiquitous use of logistic
regression, despite its interpretational difficulties discussed above; and the
far more sparse use of relative risk regression.

3 Time-to-event outcomes

Time-to-event, or survival, outcomes have the typical feature of right-
censoring, due to subjects either leaving the study or the study ending be-
fore observation of the event of interest. The simplest summary of the data,
analogous to the computation of risks for binary data, is the estimated sur-
vival function, typically plotted as the Kaplan-Meier (KM) survival curve.
This involves relatively straightforward computation of the sample proba-
bility of survival over time, dependent on the number of subjects at risk at
any time point.

Proceeding to the next level of analysis, we incorporate multiple predictors
into a model for survival time. A natural approach is a regression model
for time to event t; were it not for the censoring issue, a GLM-like multiple
regression model could look like

ti|xi ∼ D(µi, σ); log(µi) = xT

i β (1)

where D(µ, σ) denotes a distribution with support on the positive real line;
µ is a location parameter; σ is a scale/dispersion parameter; and the coef-
ficients βj are additive effects on log(µ). Likelihood maximisation for such
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models is straightforward; with censoring, estimation is somewhat more
complicated, but generally feasible.

The development of regression models, and the ability to perform complex
iterative computations was limited until the early 1970s, when the semi-
nal paper of Nelder and Wedderburn (1972) introduced generalized linear
models. These would have gone part of the way to solving (1); however this
is not the trajectory that the analysis of survival data took. The closest
model to (1) in the survival field is the accelerated failure time model (AFT,
Kalbfleisch and Prentice 1980):

log(ti) = xT

i β + ϵi (2)

where ϵi ∼ D∗(0, σ) is a parametric distribution with support on the
real line. Commonly-used choices for D∗ are the normal, logistic and ex-
treme value (Gumbel) distributions, which imply lognormal, log-logistic
and Weibull regression models for survival time, respectively.

Yet historically things took quite a different turn. The ubiquitous approach
to the modelling of survival data is the well-known proportional hazards
(PH, or Cox) model:

hi(t) = h0(t) exp(xT

i β) (3)

where the hazard function h(t) is the instantaneous probability of an event
at time t, conditional on survival to time t; h0(t) is the “baseline hazard
function” which is modified in (3) by the factor exp(xT

i β) to get the hazard
function for subject i; and exp(βj) are multiplicative effects on the hazard
function. The regression model (3) does not make any assumption regard-
ing the distribution of the time to event; however implicit in (3) is the
assumption that the hazard function has the same shape for all subjects
(“proportional hazards”).

The proportional hazards (PH) model (3) is very familiar to most statis-
ticians; it is the go-to method for the analysis of survival data. And yet
regression model (1) is a far more natural way of thinking about and mod-
elling such data: survival time is observed, and effects on the mean or
median survival time are simple and intuitive concepts. The hazard func-
tion, on the other hand, is not observed. It is a modelling abstraction and
effects on it are, in the author’s experience, not well understood by applied
researchers.

To understand why a less-obvious model has come to dominate the field,
we need to look at the history of survival analysis. In a wide-ranging inter-
view with Nancy Reid (Reid 1994), Sir David Cox explained that he had
been approached by “Quite a few people ... said they were getting a certain
kind of data, censored survival data, with a lot of explanatory variables.



Heller 43

Nobody knew quite how to handle this sort of data in a reasonably general
way, and there seemed to be dissatisfaction with assuming an underlying
exponential distribution or Weibull distribution modified by some factor.”
Cox developed the PH model in response, with the breakthrough being the
separation of the likelihood into a part that involved xT

i β and the part
that involved h0(t), thus enabling maximisation of the partial likelihood
and avoiding estimation of h0(t). This led to estimation which was feasible
at the time, and avoided the need to specify the response distribution.

So by 1980 there were two competing regression models for survival data:
the AFT (2) and PH (3) models. The PH model completely eclipsed the
AFT model in popularity, and continues to do so: Cox’s original paper (Cox
1972) is ranked 24th in Nature’s list of most cited papers of all time in all
fields (Van Noorden et al. 2014). Citations are in fact an underestimate of
the popularity of the method: it has become so mainstream that generally
papers in applications journals use the “Cox model” without reference. A
better indicator of usage of the models is the number of journal articles
using the terms “Cox model” or “proportional hazards model”. This is
shown in the right panel of Figure 1, together with “accelerated failure
time models” and “Kaplan-Meier” (obtained from PubMed searches). The
pattern of PH vs AFT models is strikingly similar to logistic vs relative
risk regression, albeit on a smaller scale. Note that Kaplan-Meier is even
more widely used (according to this measure) than the PH model.

Sir David Cox appeared equivocal about the proliferation of his method.
When asked about how he felt about the “cottage industry that’s grown
up around it” (Reid 1994), Cox replied “Don’t know, really. In the light of
some of the further results one knows since, I think I would normally want
to tackle problems parametrically, so I would take the underlying hazard
to be a Weibull or something. I’m not keen on nonparametric formulations
usually .. if you want to do things like predict the outcome for a particular
patient, it’s much more convenient to do that parametrically ... another is-
sue is the physical or substantive basis for the proportional hazards model.
I think that’s one of its weaknesses, that accelerated life models are in many
ways more appealing because of their quite direct physical interpretation”.

The AFT model (2) was developed in parallel to the GLM; and while it goes
part of the way to addressing the specialised modelling needed for time-
to-event outcomes, more general formulations are now possible. Following
(1), we can specify a distributional regression (or Generalized Additive
Models for Location, Scale and Shape, GAMLSS) model (Stasinopoulos et
al. 2023):

ti
ind∼ D(θi1, . . . , θiK) for i = 1, . . . , n (4)

gk(θik) = xT

ikβk k = 1, . . . ,K



44 Back to the future

where D(θ1, . . . , θK) is a K-parametric distribution with support on the
postive real line; the gk(·) are appropriate link functions; θ1 (or µ) is a
location parameter; θ2, . . . , θK are shape parameters; and right censoring
can be accommodated in the likelihood. The main advantages of the distri-
butional regression model (4), as implemented in the R package gamlss,
over the AFT model are: the large number of distributions available for
modelling; the ability to model not just the location of the time distribu-
tion, but also its shape; and the availability of complex additive terms (e.g.
smoothing splines, random effects, spatial effects) in the linear predictors.
In the case of heavy right censoring, parametric models cannot reasonably
be expected to do a good job of estimating the central tendency when the
central portion and upper tail of the distribution are unobserved. In this
case it makes sense to model the observed times, i.e. the left tail. Quantile
regression, another member of the distributional regression family, is useful
in this context, in which we model the lower quantiles of the survival time
distribution using censored quantile regression (Koenker 2008).

4 Application

We will illustrate the alternative models discussed above with an obser-
vational dataset of head and neck cancer patients. Survival outcomes and
several risk factors are observed.

5 Discussion

Statistical methods which are entrenched as the standard for analysis may
not necessarily be based on conceptually simple abstractions of the data
generating mechanism, and may have gained acceptance due to their math-
ematical or computational convenience. While odds ratios and hazard ratios
qualitatively deliver the same information as more intuitive quantities such
as relative risks and effects on the mean or median survival time, quanti-
tatively they are not well interpreted.

Survival data is structurally different from non-temporal outcomes, be-
cause of the temporal nature of the outcome and possibly the covariate(s).
Regression modelling may be accomplished on different scales:

� hazard function h(t): PH (Cox) regression and its many variants

� survival function S(t): generalized survival models (Liu et al 2018).
(These are more recent and less well-known.)

� time t: AFT regression, distributional regression (GAMLSS, quantile
regression)
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There is a very rich body of survival modelling based on the hazard func-
tion. While the hazard function is not observable and perhaps less well
understood than the survival function, it is informative of the course of a
disease (when estimated). PH regression has the ability to incorporate the
important feature of time-varying covariates and time-varying coefficients.
It is difficult to overstate the pervasive nature of the hazard function and
proportional hazards concept in survival analysis; and almost impossible
to find a discussion of time-to-event data without mention of the hazard
function. The AFT model, on the other hand, is the sadly neglected “poor
relation” of survival analysis. And yet it was ahead of its time, foreshad-
owing the development of the rich framework of GAMLSS models, which
have superseded it.

We urge applied researchers to be mindful of the interpretability of their
analyses, and as far as possible to “model what you measure”.
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Abstract: Quantifying changes in the probability and magnitude of extreme
flooding events is key to mitigating their impacts. While hydrodynamic data
are inherently spatially dependent, traditional spatial models such as Gaussian
processes are poorly suited for modeling extreme events. Spatial extreme value
models with more realistic tail dependence characteristics are under active devel-
opment. They are theoretically justified, but give intractable likelihoods, making
computation challenging for small datasets and prohibitive for continental-scale
studies. We propose a process mixture model (PMM) which specifies spatial de-
pendence in extreme values as a convex combination of a Gaussian process and a
max-stable process, yielding desirable tail dependence properties but intractable
likelihoods. To address this, we employ a unique computational strategy where a
feed-forward neural network is embedded in a density regression model to approx-
imate the conditional distribution at one spatial location given a set of neighbors.
We then use this univariate density function to approximate the joint likelihood
for all locations by way of a Vecchia (1988) approximation. The PMM is used
to analyze changes in annual maximum streamflow within the US over the last
50 years, and is able to detect areas which show increases in extreme streamflow
over time.

Keywords: Gaussian process; Max-stable process; Neural networks; Spatial ex-
tremes; Vecchia approximation.

1 Introduction

The Intergovernmental Panel on Climate Change released its Sixth As-
sessment in 2021 and projected an increased frequency of hydroclimatic

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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extremes. In addition to changes in the mean of climate variables, the im-
pact of climate change is more severe with changes in the frequency and
magnitude of hydroclimatic extremes. For example, Hirsch and Ryberg
(2012) found a significant change in annual maximum streamflow (a key
measure of flood risk) at 48 of 200 US Geological Survey (USGS) gauges
and spatial clustering in the direction and magnitude of the changes. As a
result, there is a need to account for spatial and temporal variability (i.e.,
nonstationarity) in flood frequency patterns when assessing current and
future risk
A spatial extreme value analysis (EVA) models exceedances or pointwise
maxima as a stochastic process over space. Modeling spatial dependence
allows for predictions at ungauged locations and the estimation of the joint
probability of extremes at multiple locations. It also facilitates the borrow-
ing of information across locations to estimate the marginal distribution at
each location, which is particularly useful for EVA where data are sparse
and low-probability events are of interest, and gives valid statistical infer-
ence for model parameters by properly accounting for spatial dependence.
We focus on the modeling of block maxima of streamflow with the help of
the max-stable process (MSP; De Haan et al., 2006). MSPs are a limiting
class of models for spatial extremes, featuring strong forms of tail depen-
dence. In practice, MSPs pose two challenges. First, the analytic forms
of (censored) MSP densities are computationally intractable for all but a
small number of spatial locations A second challenge posed by MSPs is that
they are restrictive in the class of dependence types they can incorporate.
Environmental data often has weakening spatial dependence with increas-
ing levels of extremeness; however, MSPs are unable to accommodate this
behavior. A more general approach was taken in Huser and Wadsworth
(2019) which combined a Pareto random variable with a Gaussian process
(GP) resulting in a hybrid model with perfect dependence and asymptotic
independence, indexed similarly by a mixing parameter. This flexible model
can establish asymptotic dependence or asymptotic independence from the
data without needing a prior assumption. A limitation of this model is that
the Pareto random variable is shared by the spatial locations, inducing de-
pendence between distant sites. This might be unrealistic for an analysis
over a large spatial domain.
In this paper, we propose a spatial EVA model and an associated computa-
tional algorithm to address the aforementioned limitations of the MSP and
related approaches. The EVA model is specified as a convex combination of
an MSP and a GP for residual dependency, and has Generalized Extreme
Value (GEV) margins with spatiotemporally varying coefficients (STVC).
We refer to it as the process mixture model (PMM). From a modeling
perspective, the mixture of the two spatial processes allows asymptotic
dependence or independence for locations separated by distance h, with
asymptotic independence as h→∞. Furthermore, the STVC can account
for temporal nonstationarity which is key for large-scale climate studies.
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This flexibility comes at a computational cost: the model has hundreds of
parameters and even bivariate PDFs do not have a closed form. Therefore
we develop a new computational algorithm that uses a feed-forward neural
network (FFNN) embedded in a density regression model of Xu and Reich
(2023) to approximate the conditional distribution at one spatial location
given a set of neighbors. Following this, the univariate density functions
are used to approximate the joint likelihood for all locations by means of a
Vecchia approximation (Vecchia, 1988). Parameter estimation is carried out
using Markov Chain Monte Carlo (MCMC). This computational framework
is quite general. Unlike many of the approaches mentioned above, it can
be applied to virtually any spatial process (e.g., GP, MSP, and mixtures),
can accommodate high-dimensional STVC margins, as well as missing and
censored data. We use the PMM to analyze changes in annual maximum
streamflow within the US over the past 50 years.

2 A Process Mixture Model for Spatial Extremes

Let Y (s) be the extreme observation at spatial location s. We assume a
potentially different marginal distribution for each spatial location s and
denote Fs as the marginal cumulative distribution function (CDF) for site
s. For example, we assume that Fs is the generalized extreme value (GEV)
distribution with location µ(s), scale σ(s) and shape ξ(s) so that marginally

Y (s) ∼ GEV{µ(s), σ(s), ξ(s)}.

Then the transformed variables

U(s) = Fs{Y (s)} (1)

share common uniform marginal distributions across the spatial domain.
This transformation separates residual spatial dependence in U(s) from the
spatial dependence induced by spatial variation in the GEV parameters,
which we model using GP priors over s.
We define our spatial dependence model on U(s) by taking U(s) = G{V (s)},
such that

V (s) = δgR{R(s)}+ (1− δ)gW {W (s)}, (2)

where R(s) is a max-stable process (MSP), W (s) is a Gaussian process
(GP), gR and gW are transformations that guarantee gR{R(s)} and gW {W (s)}
follow the standard exponential distribution, and δ ∈ [0, 1] is the weight pa-
rameter to control relative contribution of the two spatial processes. Mixing
the asymptotically dependent MSP with the asymptotically independent
GP provides a rich model for spatial dependence. This generalizes Huser
and Wadsworth (2019), who assumed a standard Pareto random variable
R common to all locations, by replacing it with an MSP. Since (2) mixes
two processes, we refer to it as the process mixture model.
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By construction, V (s) marginally follows the two-parameter hypoexponen-
tial distribution with CDF

G(v) = 1− 1− δ
1− 2δ

e−
1

(1−δ)
v +

δ

1− 2δ
e−

1
δ v. (3)

Without loss of generality, we assume that R(s) has a marginal GEV(1,1,1)
distribution and W (s) has a standard normal marginal distribution. In this
case, the transformations are gR(r) = − log{1− exp(−1/r)} and gW (w) =
− log{1 − Φ(w)} for standard normal CDF Φ(w). Although other options
are possible, we model the correlation of the GP W (s) using the isotropic
powered-exponential correlation function Cor{W (s1, s2)} = exp{−(h/ρW )αW }
with distance h = ||s1 − s2||, smoothness αW ∈ (0, 2), and range ρW > 0.
The MSP R(s) is assumed to have isotropic Brown-Resnick spatial depen-
dence defined by the variogram γ(h) = (h/ρR)αR for smoothness αR ∈
(0, 2) and range ρR > 0.
Extremal spatial dependence of the process at locations s1 and s2 is often
measured using the conditional exceedance probability

χu(s1, s2) := Prob{U(s1) > u|U(s2) > u}, (4)

where u ∈ (0, 1) is a threshold. The random variables U(s1) and U(s2) are
defined as asymptotically dependent if the limit

χ(s1, s2) = lim
u→1

χu(s1, s2) (5)

is positive and independent if χ(s1, s2) = 0. Since we assume both R(s)
and W (s) are isotropic processes, we simply write χu(h) and χ(h) as a
function of the distance between locations.

FIGURE 1. Behavior of the empirical conditional exceedance: Approx-
imate χu(h) for the process mixture model plotted as a function of threshold
u, distance h, and asymptotic dependence parameter δ. Smoothness parameters
αW = αR = 1, GP range ρW = 0.5, and MSP range ρR = 0.1 are fixed for both
plots. χu(h) as a function of u and δ at distance h = 0.8 (left) and as a function
of h and δ, for threshold u = 0.99 (right).
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Figure 1 plots Monte Carlo approximations of χu(h) as a function of u
and h for the process mixture model. As a function of the threshold u,
the limit tends to zero for δ < 0.5 and to non-zero values for δ > 0.5; for
small h the MSP R(s) is approximately the same for both sites and thus
the univariate R result of Huser and Wadsworth (2019) that the process is
asymptotically dependent if and only if δ > 0.5 emerges. As the distance
h increases, χu(h) converges to zero for all δ because both R(s) and W (s)
have diminishing spatial dependence for long distances. We note that χu(h)
does not converge to zero for large h under the common R model of Huser
and Wadsworth (2019), which is unrealistic for studies on a large spatial
domain.

3 Deep Learning Vecchia Approximation for the
Process Mixture Model

Fitting the process mixture model introduced in Section 2 poses computa-
tion challenges, especially for large datasets. The joint distribution for the
GP W (s) is available in closed form but is cumbersome for large datasets;
the joint distribution of the MSP R(s) is available only for a moderate num-
ber of spatial locations, and the joint distribution of the mixture model is
more complicated that either of its components. Below we develop a surro-
gate likelihood based on a Vecchia decomposition (Vecchia, 1988) and deep
learning density regression.
Assume the process is observed at n locations s1, ..., sn. Partition the pa-
rameters into those that affect the marginal distributions, denoted θ1, and
those that affect the spatial dependence, denoted θ2. For the model in
Section 2, θ1 includes the GEV parameters θ1 = {µ(si), σ(si), ξ(si); i =
1, ..., n} and θ2 = {δ, ρR, αR, ρW , αW }. Let Y (si) ≡ Yi and Ui = F (Yi;θ1)
be the transformation of the response so that the distribution of Ui ∈ [0, 1]
does not depend on θ1. We approximate the spatial model on this scale and
use the standard change of variables formula to define the joint likelihood
on the original scale

fy(y1, ..., yn;θ1,θ2) = fu(u1, ..., un;θ2)

n∏
i=1

∣∣∣∣dF (yi;θ1)

dyi

∣∣∣∣ . (6)

We approximate the joint likelihood in (6) using a Vecchia approximation
(Vecchia, 1988),

fu(u1, ..., un;θ2) =

n∏
i=1

f(ui|θ2, u1, ..., ui−1) ≈
n∏
i=1

fi(ui|θ2, u(i)) (7)

for u(i) = {uj ; j ∈ Ni} and neighboring set Ni ⊆ {1, ..., i − 1}, e.g., the
k locations in Ni that are closest to si. Here, we use the notation that
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the collection of variables zi over the neighboring set is denoted z(i) =
{zj ; j ∈ Ni}. Of course, not all locations that are dependent with location i
need be included in Ni because distant observations may be approximately
independent after conditioning on more local observations.
The conditional distributions for the process mixture model do not have
closed-form expressions. We approximate the n conditional density func-
tions separately, each using the density regression model introduced by Xu
and Reich (2023):

f(ui|xi,W) =

K∑
k=1

πk(xi,W)Bk(ui) (8)

where xi = (θ2, u(i)), πk(x,W) ≥ 0 are probability weights with
∑K
k=1 πk(x) =

1 that depend on the parametersW and Bk(u) ≥ 0 are M-spline basis func-
tions that, by definition, satisfy

∫
Bk(u)du = 1 for all k. By increasing the

number of basis functions K and appropriately selecting the weights πk(x),
this mixture distribution can approximate any continuous density function.
The weights are modeled using a feed-forward neural network (FFNN) with
H hidden layers with Lh neurons in hidden layer h and multinomial logistic
weights. The model is

πk(x,W) =
exp{γHk(x,W)}∑K
l=1 exp{γHl(x,W)}

(9)

γhk(x) = Whk0 +

Lh∑
j=1

Whkjψ {γh−1,j(x,W)} for h ∈ {1, ...,H}

γ0k(x,W) = W0k0 +

p∑
j=1

W0kjvj

where x = (x1, ..., xp), W = {Whkj} are the parameters to be estimated
and ψ is the activation function. Building on the universal approximation
theorem for FFNNs, Xu and Reich (2023) argue that (9) with H = 1 and
large K and L1 can approximate any conditional density function that is
smooth in its arguments.
Within this framework, approximating the conditional distributions is equiv-
alent to estimating the weightsW. Unlike a typical statistical learning prob-
lem, observational data are not used to estimate W. Rather, the weights
are learned from training data generated from the process mixture model
with parameters θ2 ∼ p∗, and then a realization from the process over sites
i and Ni from the model conditioned on θ2. Specifically, we generate data
at the observed spatial location with the same neighbor sets to be used
in the analysis. We select the design distribution p∗ with support cover-
ing the range of plausible values for θ2. Given these values, we generate
U(s) at s ∈ {si, s(i)}. The feature set xi for modeling ui at location i
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thus contains the spatial parameters θ2, process values at the neighboring
locations U(s(i)), as well as the spatial configuration of the neighboring
set, {(s(i) − si)} ≡ {(sj − si); j ∈ Ni}, where the sites in Ni are ordered
by the distances to si. Algorithm 1 outlines the procedure. Therefore, all
that is required to build the approximation is the ability to generate small
datasets from the model. The size of the training data is effectively un-
limited, meaning the approximation can be arbitrarily accurate. Once the
weights have been learned, applying the FFNN to the approximate likeli-
hood is straightforward, and the Vecchia approximation ensures that the
computational burden increases linearly in the number of spatial locations.

Algorithm 1 Local SPQR approximation

Require: Locations s1, . . . , sn with neighbor locations s(1), . . . , s(n)
Require: Design distribution p∗, training sample size N
i← 2
while i ≤ n do

k ← 1
while k ≤ N do

Draw values of θ2k ∼ p∗
Generate Uk(s) at s ∈ {si, s(i)} given θ2k using (2)
Define features xik = (θ2k, u(i)k), where u(i)k = {Uk(s); s ∈ s(i)}
k ← k + 1

end while
solve Ŵi ← argmax

W

∏N
k=1 f(uik|xik,W) for f(u|x,W) defined in (8)

using SPQR

i← i+ 1
end while

Given the approximate model in (6) for fy with an SPQR approximation for
fu, a Bayesian analysis using MCMC methods is straightforward. We use
Metropolis updates for both θ1 and θ2. For a spatially-varying coefficient
model with local GEV coefficients for location i, we update parameters
{µ(si), σ(si), ξ(si)} as a block sequentially by site, and exploit the Vec-
chia approximation to use only terms in the likelihood corresponding to
sites j ∋ i ∈ Nj , i.e., sites for which site i is included in the neighbor-
ing set. All Metropolis updates are tuned to give acceptance probability
0.4, and convergence is diagnosed based on the visual inspection of the
trace plots. Additional computational details are given for specific analyses
below, and MCMC code is available at https://github.com/reetamm/

SPQR-for-spatial-extremes.

https://github.com/reetamm/SPQR-for-spatial-extremes
https://github.com/reetamm/SPQR-for-spatial-extremes
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FIGURE 2. HCDN annual maxima: Sample 0.9 quantile of the log annual
streamflow (cubic ft/sec) maxima Yt(s) at each of the 489 gauges.

4 Analysis of Extreme Streamflow in the US

We apply the methods to model streamflow data from USGS Hydro-Climatic
Data Network (Lins, 2012), which is designed to monitor streamflow in lo-
cations that are unaffected by human activities. We analyze data from
1972–2021 at 489 stations across the US with complete data. Our goal is to
identify regions where the distribution of extreme streamflow is changing
over time. For each year and station, we take as the response Yt(s) the
logarithm of the annual maximum of daily streamflows. Figure 2 plots the
sample 0.9 quantile of the observations at each station.
For the marginals at each location, we assume GEV distributions with
spatio-temporally varying parameters,

Yt(s) ∼ GEV [µ0(s) + µ1(s)Xt, exp{σ(s)}, ξ(s)] , (10)

where Xt = (yeart − 1996.5)/10 for yeart = 1972 + t − 1. This parame-
terization attempts to capture changes in the location parameter in the
past 50 years due to changing climate; positive values of µ1(s) would sug-
gest an increase in the magnitude of the annual extremal streamflow. The
marginal GEV parameters for each location are assigned GP priors with
nugget effects which allows local heterogeneity, and the hyperpriors are
uninformative. Once the local SPQR models have been fitted, we run two
MCMC chains for 20,000 iterations each, with two different starting values
of δ. The first 5000 iterations from each chain are discarded as burn-in
The posterior mean (standard deviations) of the spatial dependence pa-

rameter is δ̂ = 0.47 (0.02), which puts the process in the asymptotic in-
dependence regime with high probability, but the posterior mean is near
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FIGURE 3. HCDN GEV parameter estimates: Posterior mean of µ1(s) (left)
and posterior probability that µ1(s) is positive (right).
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the 0.5 boundary. Figures 3 plots the estimated slope µ1(s) of the location
parameters with respect to time (left) and Pr[µ1(s) > 0] (right). Positive
slope estimates indicate an increase in extreme streamflow over time. The
majority of the positive slope parameters are concentrated in central and
south USA. On the east coast, the stretch between Delaware and North
Carolina contain several areas with positive slopes. Similarly on the west
coast, Washington has a high concentration of positive slope parameter es-
timates, as does California, with higher values inland and away from the
coast. The states of Wyoming, Colorado, and New Mexico are also of inter-
est since these have relatively low 0.9 quantile values in Figure 2, suggesting
that extreme streamflow is starting to have large impacts in these areas.
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Abstract: Epidemic dynamic models played a large part in the scientific man-
agement of the UK Covid-19 epidemic. However, the models were not validated
for prediction, neglected individual heterogeneity of profound dynamic impor-
tance, ignored the nosocomial transmission that accounted for a high proportion
of serious Covid cases, and employed restrictive parametric assumptions that
introduced substantial artefacts when the models were used for statistical infer-
ence. In particular, over-restrictive assumptions about how contact rates changed
over time entirely drove inferences about the timing of infection waves relative
to lockdowns. In fact the dynamic models could be re-formulated using smooth
functions to represent such contact rates. A simple empirical Bayes approach
to inference is then possible, in which an extended Fellner-Schall approach to
smoothing parameter estimation is employed. The framework allows inference
with complex dynamic models, provided that the first derivatives of the model
can be obtained. The methods are used to investigate the timing of incidence
(new infections per day) relative to lockdowns in several European countries.

Keywords: smoothing parameters; Fellner-Schall; epidemic model.

1 Introduction

. . . a substantial number of people still do not feel sufficiently
personally threatened; it could be that they are reassured by
the low death rate in their demographic group. . . the perceived
level of personal threat needs to be increased among those who
are complacent, using hard hitting emotional messaging.

This quote is extracted from the 22 March 2020 recommendations on Covid-
19 from the UK government advisory Scientific Pandemic Influenza Group

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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on Behaviour (SPI-B). It’s an unusual approach to medical risk commu-
nication, but one that dominated the UK government management of the
pandemic until late 2021. The demographic risk profile that perhaps formed
the basis for being ‘complacent’ is shown in Figure 1.

FIGURE 1. UK deaths with and without Covid-19 from March 2020 until august
2021, by age group. Data from the UK Office for National Statistics.

A major part of the scientific justification for the Covid response came
from epidemic dynamic modelling. Some of this modelling followed the tra-
ditional physics model approach, in which parameters are estimated sepa-
rately from the model, and the model then makes predictions given these
parameter estimates. Other modelling used modern Bayesian methods to
update parameters, given data on observed epidemic dynamics, albeit usu-
ally relying also on some externally estimated parameters. None of the
models were seriously validated for prediction, in the way that one would
expect for a weather of climate model, for example.
Soon after the first wave, there was some evidence that lack of validation
might matter. The leading modelling group in the UK, at Imperial Col-
lege, had published model predictions of Covid deaths under various social
distancing measures, for a variety of countries (Walker et al., 2020). For
Sweden they predicted about 35 thousand first wave deaths without full
lockdown, but with ‘social distancing of the whole population’ – the sce-
nario closest to what Sweden actually did. Sweden actually had about 6
thousand first wave Covid deaths.
Perhaps such a mismatch should not be surprising. Prediction with an epi-
demic model not validated for prediction amounts to long range extrapola-
tion with a non-linear model. But there were also extreme simplifications
in the models that reduced the likelihood of accuracy. The most obvi-
ous is the extent to which people were modelled as passive clones, rather
than variable individuals with agency. This meant that the consequences
of spontaneous behavioural change in response to perceived risk were not
captured by the models. That is perhaps inevitable given the difficulty of
modelling such responses. What was not inevitable was the neglect of most
person-to-person variability in susceptibility and contact rates. The sub-
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stantial impact of such heterogeneity on epidemic dynamics and size has
been well understood mathematically since at least Novozhilov (2008). It
is also easy to understand: more susceptible and connected individuals are
infected first, so that transmission rates decline much faster than would be
implied by the depletion of a susceptible population of clones (see McK-
eigue and Wood, 2022, for a concise introduction to the maths). That this
effect was significant for Covid was demonstrated by Gomes and co-workers
early in 2020 (eventually published as Gomes et al., 2022). Realistic levels
of heterogeneity can easily reduce epidemic size by a half.
The models also omitted hospital acquired infection, despite Wang et al.
(Feb. 2020) reporting a suspected 41% nosocomial infection rate in Wuhan
as a key finding, a feature that would be repeated in the first wave in
Lombardy in Italy where Boccia et al. (2020) note that “SARS-CoV-2
became largely a nosocomial infection”. Later analysis showed that within
Scotland, for example, the proportion of serious Covid cases that were
hospital acquired peaked at around 60% (McKeigue et al., 2021).
One might hope to be on firmer ground when considering the inferences
made with epidemic models that had their parameters fitted or updated
using modern statistical methods. But here another problem was apparent.
To achieve computational tractability, simple parametric formulations were
employed, which had the potential to introduce serious artefacts. Around
the issue of lockdown’s impact on transmission rates a particularly insidious
problem occurred. If lockdown reduces transmission rates then at lockdown
a sort of partitioning of the population occurs. There is a low transmission
locked down sub-population and a higher transmission ‘key-worker’ sub-
population. The epidemiologist’s key measure of transmission rates is R,
the average total number of new infections caused by each existing infection.
The average here is over infections, not people, and that has consequences.
In particular, immediately after lockdown, most infections are in the locked
down sub-population, so average R is low. Over time the proportion of
infections in the key-worker sub-population must grow as the growth rate
is higher there, and that means that R must grow too, since an increasing
proportion of infections are in the higher transmission sub-population. Any
model that does not allow for this dip and recovery in R will obviously suffer
from artefacts.
In fact the most influential analyses, suggesting that lockdowns were es-
sential, used models that could not capture this dip and recovery, because
of using very simple parametric models for how contact rates varied over
time. Replacing these over-simplified parametric representations with more
flexible splines changed the conclusions entirely. Such models turn out to
be quite easy work with, by adapting the extended Fellner-Schall approach
to smoothness selection (Wood and Fasiolo, 2017).
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2 Extended Fellner Schall methods

Fellner (1986) introduced a straightforward update formula for variance
components of simple independent random effects in a linear model, which
Schall (1991) generalized to the GLM setting. Given the long established
duality between spline type smooths and random effects (e.g. Kimeldorf
and Wahba, 1970), the method can be used to estimate smoothing param-
eters of smooth functions, when these are controlled by a single smoothing
parameter. The original derivations are slightly mysterious, as they involve
an equation in which the same variance term appears on both sides, and
it is then decided to substitute an estimate on the right hand side, while
treating the left hand side version as its update. However, it can be shown
that: the update is indeed in a direction that increases the (Laplace ap-
proximate) marginal likelihood of the model; it tends to make larger update
steps than the EM algorithm; it can be generalized to spline like smooths
with multiple smoothing parameters, such as adaptive or tensor product
splines, and to model likelihoods beyond GLMs (Wood and Fasiolo, 2017).
Generically, consider a model for n data, y, with coefficient vector β and
log likelihood l(β), to be estimated by penalised likelihood maximisation

β̂ = argmax
β

l(β)− 1

2
βTSλβ, where Sλ =

∑
j

λjSj , (1)

the Sj are known positive semi-definite matrices and the λj are positive

unknown smoothing parameters. β̂ is a posterior mode, if the penalty is
induced by an improper Gaussian smoothing prior β ∼ N(0,S−

λ ). In that
case, provided dim(β) = o(n1/3), we also have the n→∞ result

β|y ∼ N(β̂,H−1
λ )

where Hλ is the negative Hessian of the penalized log likelihood. Denoting
this approximate posterior as πg(β|y) then the log Laplace Approximate
Marginal Likelihood (LAML) is

lr(λ) ≡ log πλ(y) = log
{
π(y, β̂)/πg(β̂|y)

}
= l(β̂)− β̂TSλβ̂/2 + log |Sλ|+/2− log |Hλ|/2 + const.

where |·|+ denotes a product of strictly positive eigenvalues. Differentiating
w.r.t. λj we have

∂lr
∂λj

= −a+ b− c

where a = β̂TSj β̂, b = tr(S−
λ Sj)− tr(H−1

λ Sj), c = tr(H−1
λ ∂H/∂λj) and H

is the negative Hessian of the unpenalized log likelihood at β̂. The terms a
and b are positive. c = 0 in the Gaussian case and for several other GLM
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distribution-link combinations. Otherwise c is of either sign, but typically
small. The standard generalized Fellner-Schall update therefore neglects c
and uses the update

λ∗j = λj
b

a
for all j.

These updates are alternated with updates of β̂, given the current λj esti-
mates. If c = 0 it can be shown that the updates always result in smoothing
parameter changes in the direction of improving lr. If c is non-zero then
the process will only approximately optimize lr. Note that the neglect of c
is exactly what is done by PQL (Breslow and Clayton, 1993), for example.

In practice β̂ is usually found by Newton’s method, which itself requires
evaluation of Hλ. The fact that the smoothing parameter update requires
no more than was anyway needed to find β̂ is then quite convenient. Note
also that the expression tr(S−

λ Sj) is purely formal, and one would obviously
not compute it by forming an unstructured pseudo-inverse of Sλ. For any
single λj smooth, tr(S−

λ Sj) = rank(Sj)/λj , the required rank being fixed
and known. Only for a smooth with multiple λj is an explicit pseudoinverse
required, and then only for the diagonal block of Sλ corresponding to the
smooth (in fact with some upfront re-parameterization the pseudoinverse
can be replaced by a regular inverse).
If we do not want to neglect c then it can be computed, by applying implicit
differentiation to find ∂β̂/∂λj and then using the chain rule to compute
the derivative of H. Doing so typically requires 3rd derivatives of the log
likelihood to be evaluated, and the update then becomes

λ∗j =

{
λj(b− c)/a c ≤ 0
λjb/(a+ c) c > 0.

A less implementationally tedious alternative is to start off updating all
smoothing parameters at each iteration using the c = 0 update, but near
convergence to switch to only updating one λj at a time, so that each
update can also provided a finite difference estimate of ∂H/∂λj and hence
cj = tr(H−1

λ ∂H/∂λj). This cj can be carried forward as the estimate of c
for the next time λj is updated. As the iteration converges, so the carried
forward cj values converge to the correct values. Either the exact or finite
difference scheme exactly optimizes lr.

2.1 EFS computation for complicated models

The above discussion assumes that we are happy to evaluate Hλ, but that
may not always be practical. For example, in order to check and replicate
Knock et al. (2020), Wood and Wit (2021) fitted a Covid epidemic dy-
namic model with some 7 hundred state variables to various health data
streams, representing a key contact rate modifier with an adaptive smooth-
ing spline. Simply to obtain first derivates of the model log likelihood w.r.t.
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model coefficients required a system of over 65 thousand ordinary differen-
tial equations. The second derivative system required for direct evaluation
of Hλ would have been entirely intractable.
The solution is to solve (1) by a quasi-Newton method, requiring only first
derivatives to be computed. Hλ can then be approximated by finite dif-
ferencing the first derivatives around β̂, and used in a generalized Fellner-
Schall update of the smoothing parameters. Note that if applied to a stan-
dard generalized additive model this approach would have the O(np2) cost
of the usual methods, where p = dim(β). In that case derivative computa-
tions are each O(np), so the O(p) of these required for the finite differenced
Hessian leads to 0(np2) cost.

3 Inferring Covid Incidence

FIGURE 2. Top: Covid-19 incidence reconstructions for England (scaled to fatal
incidence scale). The grey 95% confidence band is the reconstruction from the
NHS hospital daily death with covid data shown as blue circles. The blue line is
the REACT-2 reconstruction from symptom onset dates of a random sample of
antibody positive subjects. The black dots and CIs jointed by the dashed line are
ONS incidence estimates from statistical surveillance sampling. Lockdown dates
are at vertical red lines. Bottom: pathogen reproductive number, R, correspond-
ing to the grey incidence band, assuming a simple SEIR model.

The preceding approach makes it relatively straightforward to work with
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non-standard models containing unknown smooth functions. A straightfor-
ward example is a deconvolution model for inferring Covid fatal incidence
(new, ultimately fatal, infections per day), from data on deaths with Covid
by exact day of death. For example,

E(yi) =

Di∑
d=0

exp{f(ti − d)}π(d) yi ∼ negative binomial

where yi is the number of deaths with Covid on day ti, π(d) is the proba-
bility of a fatal disease duration of d days and exp{f(t)} is the number of
new (fatal) infections on day t. Di is the maximum lag considered at day
ti: it might typically be set to e.g. 80 days, but to lower values at the start
of the epidemic, for statistical stability reasons and reflecting the fact that
at the start, short disease durations will be seen first. The formulation in
terms of log incidence ensures that incidence remains positive. Smoothness
on the log scale also implies smoothness of the epidemiologist’s intrinsic
rate of increase parameter, r.
Figure 2 shows the results of applying this model to English National Health
Service (NHS) data on daily deaths with Covid, assuming a fatal disease
duration distribution log(d) ∼ N(3.151, 0.4692) based on the meta-analysis
of McAloon et al. (2020) for time from infection to first symptoms, and data
on over 24000 fatal cases from Pritchard et al. (2020) for onset to death.
This distribution is similar to what is reported in Verity et al. (2020), Lin-
ton et al. (2020) and Wu et al. (2020). The pathogen reproductive number,
R, consistent with the reconstructed incidence, assuming a simple SEIR
model, is also shown (see Wood, 2021, for details). The results for the first
wave are essentially the same as those obtained by this approach in early
May 2020 (Wood, 2020). Subsequently, direct estimates of incidence based
on statistical survey methods confirmed the pattern of incidence decline
preceding lockdowns. The blue line on figure 2 shows incidence according
to the REACT-2 study: antibody positive subjects, in their randomized
statistical sample, where asked when their symptoms started (Ward et al.,
2021). What is plotted is lagged by 5.8 days (McAloon et al., 2020) to
allow for the delay from infection to first symptoms. The black dots with
confidence intervals, joined by a dashed line, are reconstructions of inci-
dence from the ONS statistical surveillance survey. Both reconstructions
are rescaled for plotting on the fatal incidence scale.

3.1 Checking epidemic model based reconstructions

Analyses from Imperial College (Flaxman et al., 2020; Knock et al., 2020,
2021), and the MRC unit in Cambridge (Birrell et al., 2021) were influential
in promoting the idea that lockdown was essential for turning around the
first wave of infection. All were based on fitting epidemic models and all
showed incidence continuing to surge until the eve of lockdown.
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In the case of (Birrell et al., 2021), transmission rates were controlled by a
step function that changed weekly, except prior to lockdown where it was
constant: such a model has no way of accommodating a drop in incidence
prior to lockdown. The surging incidence result was built in. Flaxman et al.
(2020) used an epidemic renewal model in which R was controlled by a
step function that changed when government policy changed, which it did
frequently up until lockdown, but not for weeks thereafter. The model was
fitted to daily death data, similarly to the simple deconvolution model.
Recasting this epidemic model to use a penalized spline to model log(R),
estimation is fairly straightforward using the methods of section 2. This
more data driven version of the model gives results very similar to figure
2, rather than surging incidence up until lockdown. The change relates to
removal of the assumption that R is essentially constant after lockdown,
which is not possible if lockdown is effective at limiting transmission.
Knock et al. (2020) used a more elaborate age structured model of the epi-
demic and health service to infer R and incidence from multiple streams of
health data from each of the 7 English health service regions. The model for
each region has some 700 state variables. The key transmission rate modi-
fier controlling overall dynamics was a piecewise linear function: inference
targeted the function values at its 12 breakpoints. Again the model setup
allowed insufficient flexibility post lockdown. Knock et al. (2020) used par-
ticle filtering for inference, apparently with only 96 particles. Wood and
Wit (2021) re-implemented the model, replacing the piecewise linear func-
tion with a more data driven adaptive spline. Inference used the approach
outlined in section 2.1. Again the results then align with figure 2.

3.2 International results

The correspondence between incidence trajectories directly estimated by
statistical sampling methods and the deconvolution approach, and the
agreement with epidemic model fitting approaches once over-restrictive
parametric assumptions are relaxed, all suggest that the deconvolution
method is sufficiently trustworthy for application to other countries. We
were able to obtain data by exact day of death for 9 additional countries.
Figure 3 shows the incidence reconstructions for each, with dates of full
national stay at home lockdowns shown as vertical red lines. For the most
part the pattern of incidence decline preceding lockdowns is repeated.
This obviously does not imply that lockdowns had no effect. For example,
both Sweden and Switzerland experienced broader waves, with subsidiary
peaks, when they did not impose full lockdowns, but lesser measures. Coun-
tries that locked down tended to have shorter waves of infection. But the
results do not support the idea that lockdowns were essential to turning
around infection waves.
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FIGURE 3. Fatal Covid-19 incidence rates in relation to lockdown timings in-
ferred from daily death data for countries where these are available by exact day
of death (rather than reporting day).

4 Conclusions

The combination of Newton or quasi-Newton methods to optimize penal-
ized likelihoods with respect to model parameters, and simple generalized
Fellner-Schall type updates to optimize smoothing parameters, facilitates
the use of smooth functions within a variety of non-linear model structures.
The resulting semi-parametric models may be less prone to severe model
mis-specification bias than more parametric alternatives. The example of
Covid peak incidence timing relative to lockdowns illustrates that the con-
sequences of model mis-specification biases can potentially be quite grave.
It seems unlikely that the reduction in suffering brought about by lock-
downs was, or could be, optimally balanced against the profound damage
caused by lockdowns, given a false belief that lockdowns were essential to
turning around infection waves. At least in the UK, the lockdown damage
includes an exacerbation of economic deprivation of the sort clearly linked
to substantial life loss/ early death (Marmot et al., 2020).
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Abstract: Decision trees are simple yet powerful machine learning tools. How-
ever, when applied to time series data, they do not accommodate for features
that are often found in such data, such as state-switching over time. To account
for time-varying functional relationships between the response variable and co-
variates, we propose state-switching decision trees, where, at any time point, a
Markov chain determines the tree that generates the corresponding outcome. The
suggested approach is illustrated using American football data, where we predict
whether a team attempts to reach the opposing team’s end zone by either run-
ning or passing the ball conditional on covariates, such as the current quarter and
score, and demonstrate how the states can be linked to the current level of the
team’s risk-taking. R code that implements the proposed methods is available at
https://github.com/timoadam/MarkovSwitchingDecisionTrees.

Keywords: Decision trees; EM algorithm; Hidden Markov models; Time series
modelling.

1 Introduction

State-switching decision trees comprise two stochastic processes, one of
which is hidden and the other is observed:

� a hidden state process {St}t=1,...,T (e.g., the current level of a team’s
risk-taking);

� an observed state-dependent process {Yt}t=1,...,T (e.g., a binary vari-
able indicating whether the team attempts to reach the opposing
team’s end zone by either running or passing the ball).

The state process is modelled by a discrete-time, N -state Markov chain
with initial probabilities δi = Pr(S1 = i), i = 1, . . . , N , and transition

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Dependence structure of state-switching decision trees. The state of
the Markov chain that is active at time point t, St, selects one of N possible trees
that generates the corresponding outcome Yt depending on covariates xt.

probabilities γi,j = Pr(St = j | St−1 = i), i, j = 1, . . . , N . The state-
dependent process is modelled by N trees, where the state of the Markov
chain that is active at time point t, St, selects the tree that generates the
corresponding outcome Yt depending on covariates xt (see Figure 1 for an
illustration of the dependence structure).

2 Model fitting

Model fitting is conducted using the EM algorithm, where the joint log-
likelihood of the outcomes and states is obtained by representing the state
sequence by the binary variables ui(t) = I(St = i), i = 1, . . . , N, t =
2, . . . , T , and vi,j(t) = I(St−1 = i, St = j), i, j = 1, . . . N , t = 1, . . . , T ,
such that

l(θ) = log

(
δs1

T∏
t=2

γst−1,st

T∏
t=1

Pr(Yt = yt | St = st)

)

=

N∑
i=1

ui(1) log(δi) +

N∑
i=1

N∑
j=1

T∑
t=2

vi,j(t) log(γi,j)

+

N∑
i=1

T∑
t=1

ui(t) log
(
Pr(Yt = yt | St = i)

)
,

where

Pr(Yt = k | St = i) =
1

nm̃i

∑
j=1,...,T :
xj∈Rm̃i

I(yj = k),

with m̃i ∈ 1, . . . ,Mi being the node for which xt ∈ Rm̃i
and nm̃i

denot-
ing the number of observations in region Rm̃i

for the i-th tree. The EM
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algorithm alternates between the E-step, which involves the estimation of
the ui(t)

′s and vi,j(t)
′s given the current estimates, and the M-step, which

involves the maximisation of the joint log-likelihood with respect to the
parameters, until convergence (Zucchini et al., 2016). Note that only the
third term of the joint log-likelihood depends on the trees’ parameters.
For maximising that part within the M-step, we use the CART algorithm
(Breiman, 2017; Therneau and Atkinson, 2019), where the outcomes are
weighted by the current estimates of the ui(t)

′s, and the Gini index is used
as impurity measure to select the splitting variables and split points.

3 Application to American football data

In American football, the possession team (i.e., the offense) attempts to
reach the opposing team’s (i.e., the defense) end zone by either running or
passing the ball. For the defense, it is thus of interest to predict the posses-
sion team’s play (Joash Fernandes et al., 2020). We use play-by-play data
covering all NFL seasons from 2012–13 to 2018–19, where the states serve
as proxies for the current level of a team’s risk-taking. More risky styles of
play are usually aligned with a higher propensity to throw a pass (as op-
posed to performing a run). As covariates, we use the current quarter (qtr),
the score difference (score differential), the down (e.g., one corresponds to
the first of four possible attempts to reach the new first down), the yards
to go for a new first down (ydstogo), whether the quarterback is in shotgun
formation (shotgun), and whether the match is played at home.

State 1

1

 >= 4

 < 1

0

 < 4

 >= 1

shotgun

pass
0.12
50%

ydstogo

run
0.60
41%

ydstogo

pass
0.02
0%

run
0.85
9%

State 2

1

1,2,3,5

 >= 11

0

4

 < 11

shotgun

pass
0.21
48%

qtr

ydstogo

pass
0.17
2%

run
0.64
38%

run
0.94
13%

FIGURE 2. Fitted trees for state 1 (left) and 2 (right).
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Figure 2 shows the fitted trees for the New England Patriots (to facilitate
the interpretation, the maximum depth of each tree was chosen to be 3).
The tree associated with state 2 is more likely to predict a pass, e.g., when
the team is in shotgun formation (leaf node 1), but also when the team is
in the first, second, third, or fourth quarter and there are at least 11 yards
to go for a first down (leaf node 2), indicating a more risky style of play.
In contrast, the tree associated with state 1 only predicts a pass when the
team is in shotgun formation (leaf node 1) or when the team is in the first,
second, or third quarter and there is less than 1 yard to go for a first down
(leaf node 3), indicating a less risky style of play.

FIGURE 3. Variable importance for state 1 (grey) and 2 (orange).

To further investigate the fitted trees, we use a variable importance plot
(see Figure 3). In both states, being in shotgun formation and down are the
most important predictors. For the remaining predictors, the importance
differs across states: in state 1, yards to go is the third most important
predictor, while in state 2, quarter is more important.

4 Discussion

State-switching decision trees account for time-varying functional relation-
ships between the response variable and covariates. Although we used bi-
nary outcomes, any time series of categorical outcomes can, in principle,
be modelled. Our approach could also be adapted to other machine learn-
ing techniques such as state-switching regression trees, or more powerful
ensemble methods such as state-switching random forests. State-switching
decision trees thus provide a starting point for future research exploring
the combination of machine learning with statistical modelling.
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Abstract: When dealing with high-dimensional multivariate data, it is often
of interest to learn the dependence structure among the variables in the dataset
while inducing sparsity to enhance the interpretability of the discovered patterns.
Survey data are a typical example of this scenario, but the presence of continuous
and discrete items aggravates the computational complexity of the learning task.
Therefore, we propose a proximal stochastic gradient method which, by taking
advantage of the structure of the pseudo-likelihood of the graphical model of
interest, provides affordable but still efficient approximations of the conditional
dependence patterns among the items.
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1 Introduction

In the following, we consider the problem of learning undirected graphical
structures from large-scale surveys with both categorical and continuous
items. Namely, we want to learn which pairs of variables are conditionally
independent given the rest of the survey and which are not. From an opti-
misation point of view, the problem can be tackled via proximal algorithms
to account for a regularisation component to induce sparsity in the edge
structure, as outlined in Lee and Hastie (2015). However, the per-iteration
complexity of numerical optimisers grows linearly with the sample size,
such that it might be computationally helpful to rely on stochastic gradi-
ent algorithms when dealing with large-scale problems.
In this contribution, we propose an efficient stochastic version of the prox-
imal gradient algorithm which takes advantage of the structure of Besag’s
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pseudo-likelihood (Besag, 1974) to improve on the efficiency of stochastic
gradient approximations based on mini-batches of observations (see Bottou
et al., 2018 for an in-depth overview). We apply it to estimate the network
structure of data from the US National Health and Nutrition Examination
Survey (NHANES) for the 2017-2018 cohort.

2 Proximal stochastic gradient for mixed graphical
models

Let Y = (Y1, . . . , Yp)
⊤ be the multivariate random variable correspond-

ing to the graph of interest, with density p(Y ; θ) and θ ∈ Rd. Let C =
{1, . . . , pc} be the set of indexes corresponding to continuous nodes, while
D = {pc + 1, . . . , p} the one for the categorical ones, for a total of p nodes.
Rather than optimising log p(y; θ), which requires the computation of the
partition function of the graph here denoted as Z(θ), we follow Lee and
Hastie (2015) and focus on the maximisation of the average log pseudo-
likelihood

pℓn(θ; y) =
1

n

n∑
i

pℓ(θ; yi.) =
1

n

n∑
i

∑
j∈C

ℓj(θ; yi.) +
∑
j′∈D

ℓj′(θ; yi.)

 , (1)

where ℓj(θ; yi) = log p(yij |yi\j ; θ), yi. is the realisation of Y on the i-th unit,
yij its j-th element and yi\j is the collection of elements in yi. except for
yij . The benefit of Besag’s pseudo-likelihood is that it allows frequentist
estimation of graphical structures by specifying only the full conditional
margin of each node, not their joint distribution. Hence, it does not need
to compute Z(θ), whose cost grows exponentially in p. For the sake of
brevity, we refer to Lee and Hastie (2015) for the exact parameterisation
of ℓj(θ; yi), j∈ C,D. In order to induce sparsity in the estimation of the
edge parameters, the negative log pseudo-likelihood can be augmented with
g(θ), a non-smooth regularisation term composed of lasso and group-lasso
penalties such that the optimisation problem to consider becomes

min
θ∈Rd

−pℓn(θ; y) + λg(θ), (2)

where λ is a scalar regularisation parameter. A natural approach to deal
with the minimisation in (2) is to take advantage of proximal algorithms.
In particular, given an initial value θ0 and a stepsize scheduling ηt, the
generic t-th update of a proximal gradient method can be written as

θt = Proxηt,λg {θt−1 + ηt∇pℓn(θt−1)} ,

with Proxη,λg(θ) being the proximal map associated to λg(θ), as reviewed
in Parikh and Boyd (2014). When dealing with large-scale problems, it
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can be the case that ∇pℓn(θ) is too expensive to compute exactly since its
complexity grows with O(np). Atchadé et al. (2017) propose replacing the
gradient of the objective function with an unbiased stochastic approxima-
tion U(θ; ξ). Thus, in our case, we need it to satisfy

∫
U(θ; ξ)dξ = ∇pℓn(θ).

However, while Atchadé et al. (2017) directly optimise log p(y; θ) by con-
structing gradients based on the stochastic approximation of Z(θ), here
we focus on the minimisation of the negative of the pseudo log-likelihood
outlined in (1). A straightforward strategy would be to use a standard
mini-batch stochastic gradient, U ′(θ) = m−1

∑m
k pℓ(θ; yk.), where m is the

number of observations drawn uniformly at random from the dataset. The
complexity of U ′(θ) becomes O(mp), which is independent of n.
However, while U ′(θ) can be much cheaper to evaluate than ∇pℓn(θ), its
variability increases the number of iterations the algorithm needs to con-
verge. Intuitively, the lower the noise U ′(θ) injects in the optimisation, the
faster the convergence of the algorithm. In this regard, by taking advantage
of the log pseudo-likelihood sum structure, we propose defining U(θ; ξ) as
the gradient of the combination of a random subset of conditional margins
drawn from the available dataset. Namely, at each iteration t, the algorithm
alternates

ξtij
i.i.d.∼ Bernoulli(γ), for i = 1, . . . , n and j = 1, . . . , p; (3)

U∗(θt−1; ξt) =
1

nγ

n∑
i

∇

∑
j∈C

ξtijℓj(θt−1; yi.) +
∑
j′∈D

ξtij′ℓj′(θt−1; yi.)

 ;

θt = Proxηt,λg {θt−1 + ηtU
∗(θt−1, ξt)} .

In principle, it might seem that an equivalent algorithm can be obtained by
using the mini-batch approximation. Nevertheless, because of the unique
nature of the pseudo-likelihood, the variance of a mini-batch stochastic
gradient can be much larger than that of U∗(θ; ξ), even when setting nγ =
m to match the two computational costs.
An intuitive explanation for the better efficiency of U∗(θ; ξ) stems from
investigating how it compares to the standard mini-batch approach when
fixing nγ = m = 1. Since the standard mini-batch approach considers m
units, in this scenario, it only accounts for one single observation, with the
cost of the gradient being O(p). Regardless, the algorithm in (3) constructs
U∗(θ; ξ) by pooling together O(p) conditional contributions from different
observations rather than just one. Depending on the problem, the depen-
dence structure among the nodes can be more or less tight. Thus, choosing
p full-conditional components from the same observation might lead to a
certain overlapping of statistical information. In this regard, U∗(θ; ξ) makes
better use of the available computational resources since it spreads the p
contributions among many observations.
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3 Real data application

To illustrate the effectiveness of the proposed methodology, we analyse data
from the NHANES survey for the 2017-2018 cohort. Because of the inabil-
ity of the algorithm in its current form to deal with missing values, let us
focus on a subset of the complete pool of items available. In particular, we
consider questionnaire responses on multiple areas, such as mental health,
smoking-behaviour, sleep disorders and alcohol use. In addition to ques-
tionnaire responses, we account for demographic variables related to age,
income, education level and marital status. Finally, the survey also includes
medical measurements and examination data, among which we retained
some elemental body indicators such as weight, height, blood pressure and
heart rate. The final dataset accounts for n = 1527 adults (20 years old or
more) and p = 36 variables (18 continuous, 2 binary, 6 with three categories
and 10 with four) for a total d = 3178 parameters to estimate. The high
ratio d/n makes the setting a relevant application for proximal methods.
The parameter γ is set to account for 1/10 of the train set per iteration,
and, for illustration purposes, the algorithm stops after one single pass
through the train data. The regularisation parameter λ is chosen by min-
imising the negative log-likelihood of a 20% holdout set over 100 equispaced
points in the interval [10−3, 1]. Figure 1 shows that the optimal choice for λ
decreases as the optimisation proceeds in terms of complete passes through
the train set. Such behaviour is expected since the number of iterations
plays a role similar to the sample size. In fact, as the optimisation pro-
ceeds, the algorithm accounts for an increasing share of the data, and the
need for regularisation decreases.
After a complete pass through the training partition, the identified graph
selects almost the 10% of the edges as active. Figure 2 shows the estimated
structure, highlighting with colours the area to which each item belongs.
The size of nodes and edges are proportional, respectively, to the number of
edges connecting that node to the rest of the graph and the norm of the edge
analysed. The figure outlines some remarkable patterns. For example, the
items aiming to identify depression are strongly interdependent but connect
to the rest of the graph mainly through the node DPQ090. Such label
refers to a very crucial item for the mental-health questionnaire, namely
“Thought you would be better off dead”. The figure highlights how this
node connects the depression-related questionnaire to some of the other
areas, via the items “Home owned, bought, rented” (HOQ065 ), “Marital
status” (DMDMARTL), “Born in US” (DMDBORN4 ) and “Sleep hours,
weekends” (SLD013 ). Furthermore, it follows that the depression-related
items are independent of body and blood measurements and smoking and
alcohol behaviours when conditioned on sleep disorders, housing status and
demographic variables.
As for all statistical methods, such models must be intended as a simplifi-
cation of the complex reality they aim to describe. However, highlighting
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FIGURE 1. Holdout average negative log-likelihood with varying regularisation
parameter. Colours refer to the number of complete passes through the dataset
or the number of iterations (each step of the optimisation accounts for 10% of the
data). Points are located at the optimal value of λ for each share of the dataset.

the statistical dependencies observed in the data can still provide some
valuable insights to deepen the understanding of such delicate issues.

4 Discussion and ongoing work

Structure learning techniques have advanced notably in the last years, and
the combination of proximal methods and stochastic approximations is a
promising direction to address the scalability of such algorithms. In partic-
ular, with extensive population surveys, they can be extremely helpful in
investigating the dependence structure among the variables of interest.
In order to extend the estimation to a larger pool of items from the NHANES
survey, we plan to work out an imputation mechanism for the missing val-
ues. Finally, an open-source software package is in development as a com-
panion to the proposed method.
For reproducibility purposes, the code used in Section 3 is available at
https://github.com/giuseppealfonzetti/iwsm2023.
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Abstract: Habitat selection analysis is a statistical framework used to under-
stand sequential movement decisions of animals based on spatial features. In
addition, this approach specifies the availability of sequential locations through a
movement kernel. This movement kernel is defined as the product of parametric
distributions for the step lengths and turning angles based on sequential animal
locations. However, this assumption is not plausible for real data. The objective
of this paper is to relax the need for parametric distributions with help of Gen-
eralized Additive Models (GAM) and the R-package mgcv. For this, we propose to
specify the movement kernel as a bivariate tensor product instead of specifying
parametric distributions for the movement kernel.
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els.

1 Introduction

With the advances in tracking systems technology (every few seconds be-
tween sequential locations), a very common statistical approach to under-
stand animal movement is called Integrated Step Selection Analysis (iSSA)
(Avgar et al. 2016). With this approach, researchers try to understand
movement decisions based on spatial features in the study area. Here they
can account for the fact that sequential locations may be not independent to
each other by including exponential family distributions of distances/step
lengths (SLs) and turning angles (TAs) between locations. Typically, a
gamma distribution and a von Mises distributions are assumed for the SLs
and TAs respectively. Thus, Avgar et al. (2016) defined the movement ker-
nel ϕ as the product of these two distributions, assuming that step lengths

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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and turning angles are independent to each other.

Despite this being an interesting approach, the movement kernel parame-
ters estimates are usually not of interest. In addition, in real data analysis,
the movement kernel may not be well represented by these parametric dis-
tributions. Another disadvantage is that in iSSA analyses, the step lengths
and turning angles are assumed to be independent from each other. This
assumption is not necessarily plausible for real data. For this reason, we pro-
pose to fit telemetry data with help of Generalized Additive Models (GAM).
Doing this, the movement kernel can be specified as a two-dimensional ten-
sor product with help of the R-package mgcv (Wood 2011). This can be done
with the implementation of Muff et al. (2020) since it uses the GLM frame-
work needed for the GAM approaches by including time-specific intercepts
modelled as random intercept with a large fixed variance parameter. Thus,
similar to Arce Guillen et al. (2023), in this paper we will interpret the
movement process as sequence of Nonhomogeneous Point processes (NH-
PPs) which can be approximated to a single Poisson GLM model. We name
our approach GAM-SSA.

2 Model formulation

Conceptually, we use the same spatial density as Forester et al. (2009).
Thus, the spatial density for observing location st at time t given the last
two observed locations st−1 and st−2 is given by:

f(st|st−2, st−1;β) =

Movement kernel︷ ︸︸ ︷
ϕ(st−2, st−1, st)

RSF︷ ︸︸ ︷
ω(X(st);β)∫

qt∈S
ϕ(st−2, st−1, qt)ω(X(qt);β)∂qt︸ ︷︷ ︸

Normalizing constant

(1)

However, rather than defining the movement kernel as a product of para-
metric distributions, we define it as a two-dimensional positive function
that depends on the step lengths and turning angles:

ϕ(st−2, st−1, st) = exp (f(SLt, TAt)) (2)

The function f() reflects the animal preferences for SL and TA combina-
tions. In addition, the exponential function ensures positivity and since it
is an increasing monotonic function, the preference relation remains the
same. Using the trick of Muff et al. (2020), we specify the corresponding
joint log-likelihood as the sum of a sequence of unconditional NHPPs (Arce
Guillen et al. 2023). This model specification is a generalization of the iSSA
approach. With the presented specification, parametric distributions com-
ing from the exponential family are also included in this framework.
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The selection of spatial features is expressed by a RSF ω:

ω(X(st);β) = exp(β1X1(st) + ...+ βpXp(st) + u(st)) = exp(η(st)) . (3)

where βj for j = 1, ..., p represents the strength of spatial feature Xj(st).
In addition, u represents all the missing spatial variation not explained by
the spatial features.

Thus, the sequence of NHPPs is approximated by sampling at each time
point integration points uniformly over a disk of ratio equal to at least the
maximum observed step length (Figure 1).

FIGURE 1. Integration strategy: We sample at each time point integration points
uniformly within the respective disks of availability.

3 Simulation

We have simulated animal tracks using different movement kernel speci-
fications. In these settings, the animals move according to three spatial
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covariates ”x1”, ”x2” and ”cen”. The latter represents a centralizing ten-
dency. For each setting, we produced 100 animal tracks consisting of 1000
locations. We simulated the four different scenarios. For the first scenario,
we assume a bimodal distribution for the SLs and a von Mises distribu-
tion for the TAs. In the second case, we use a bivariate copula distribution
using a Weibull distribution for the SLs and a wrapped Cauchy distribu-
tion for the TAs. we assume a Gamma and a Von Mises distribution for
the SLs and TAs respectively. The third scenario consists of the classical
Gamma/von Mises setting. In the last scenario, we use a uniform move-
ment kernel. These tracks have been fitted using the GAM-SSA and the
iSSA using the same integration points. In these simulations, for simplicity,
we have no missing spatial variation.

4 Results

FIGURE 2. Fixed effects results for the simulation scenarios. Each box-plot rep-
resents the fixed effects estimates of 100 simulations.

With the exception of the centralizing tendency ”cen” for the uniform move-
ment kernel case, the GAM-SSA estimated the effects of the spatial covari-
ates without any noticeable bias in any direction (Figure 3). However, the
centralizing tendency was also biased for the classical iSSA approach. In
the copula case, our method seemed to be more accurate than the iSSA
approach. For the other cases, the GAM-SSA returned very similar fixed
effects as the iSSA approach. Thus, the GAM-SSA can be used without
any concern.

As observed in Figure 3, the usage of splines is leading to estimating the
movement kernel accurately for all four scenarios with exception of the
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Coefficient Fit Scenario Mean True value 0.05-quantile 0.95-quantile Coverage
x1 GAM-SSA (NHPP) Bimodal 1.48 1.50 1.37 1.60 0.94
x1 iSSA (NHPP) Bimodal 1.52 1.50 1.41 1.64 0.96
x2 GAM-SSA (NHPP) Bimodal -0.99 -1.00 -1.10 -0.90 0.94
x2 iSSA (NHPP) Bimodal -1.01 -1.00 -1.12 -0.92 0.93
cen GAM-SSA (NHPP) Bimodal -0.02 -0.01 -0.03 0.00 0.91
cen iSSA (NHPP) Bimodal -0.02 -0.01 -0.04 -0.00 0.91
x1 GAM-SSA (NHPP) Copula 1.51 1.50 1.39 1.64 0.98
x1 iSSA (NHPP) Copula 1.42 1.50 1.30 1.56 0.84
x2 GAM-SSA (NHPP) Copula -1.00 -1.00 -1.11 -0.91 0.96
x2 iSSA (NHPP) Copula -0.95 -1.00 -1.06 -0.85 0.91
cen GAM-SSA (NHPP) Copula -0.02 -0.01 -0.05 0.01 0.91
cen iSSA (NHPP) Copula -0.01 -0.01 -0.04 0.01 0.96
x1 GAM-SSA (NHPP) Gamma-Mises 1.50 1.50 1.37 1.63 0.97
x1 iSSA (NHPP) Gamma-Mises 1.51 1.50 1.38 1.64 0.97
x2 GAM-SSA (NHPP) Gamma-Mises -1.00 -1.00 -1.10 -0.90 0.95
x2 iSSA (NHPP) Gamma-Mises -1.01 -1.00 -1.10 -0.90 0.94
cen GAM-SSA (NHPP) Gamma-Mises -0.02 -0.01 -0.05 0.01 0.94
cen iSSA (NHPP) Gamma-Mises -0.02 -0.01 -0.05 0.01 0.94
x1 GAM-SSA (NHPP) Uniform 1.49 1.50 1.44 1.54 0.95
x1 iSSA (NHPP) Uniform 1.50 1.50 1.45 1.56 0.96
x2 GAM-SSA (NHPP) Uniform -0.99 -1.00 -1.05 -0.94 0.96
x2 iSSA (NHPP) Uniform -1.00 -1.00 -1.07 -0.95 0.94
cen GAM-SSA (NHPP) Uniform -0.02 -0.01 -0.02 -0.02 0.00
cen iSSA (NHPP) Uniform -0.02 -0.01 -0.02 -0.02 0.00

TABLE 1. Fixed effects: Summary results of the simulation study. The coverage
represents the percentage for which the true values were covered by the 95%
confidence intervals.

FIGURE 3. GAM-SSA: Estimated movement kernel for one simulated track. The
black dots represent the observed animal locations.
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uniform movement kernel, which does not represent a uniform movement
behaviour. However, this is the case since the model is overestimating the
coefficient of the centralizing tendency ”cen” and accounts for this through
the movement kernel.
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Abstract: Boosting models are often used in statistics and machine learning,
typically yielding good prediction accuracy on test data due to a relatively slow
overfitting behavior. On the other hand, in special cases, they can even lead to
a double descent phenomenon of the test risk, i.e., the performance on the test
set first gets worse and then improves again as the number of boosting rounds
increases. A strategy to enforce this double descent is to use a flooded version of
the loss function. We explore the behavior of boosting combined with flooding
from an information-theoretic perspective, giving insights on the double descent
phenomenon with potentially interesting implications about the bias-variance
trade-off in statistical modelling.

Keywords: Boosting; Flooding; Double descent; Information plane.

1 Introduction and related work

Statistical models play a fundamental role in classification and regression.
The stopping criterion of the models’ parameters learning phase (or the
regularization parameter) influences the prediction accuracy. The aim is to
identify the sweet spot between under- and over-fitting the data. The test
error trajectory can follow the classical U-shape or a more fancy W-shape,
involving multiple descending curves, known as double descent (Figure 1).
Boosting techniques combine weak learners and increase the model accu-
racy iteratively; after several boosting rounds, the learning stops. Ferreira
and Figueiredo (2012) studied the occurrence of double descent in sev-
eral prediction models; some years later, Belkin et al. (2019) showed that
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tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
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FIGURE 1. Representative plot of the training and test errors for increasing
boosting rounds; in green color, the typical one descent, and in red color, the
double descent behavior. The flood (in blue) impedes the training error from
decreasing below b.

double descent is induced by changing the type of weak learners added at
each boosting round from single trees to forests. Furthermore, Ishida et al.
(2020) proposed a technique to induce double descent in prediction models
by flooding the loss function.
We investigate conditions for observing double descent in boosting without
changing the weak learners’ complexity. To this purpose, we integrate a
flooded loss function, thus increasing the chance of observing a W-shape of
the test error (see Figure 1). We aim to explain the appearance of double
descent from an information-theoretic perspective using the lossless com-
pression criteria shown in Nikolaou (2021).

2 Methods and Results

A new weak learner meant to minimize a loss function J is integrated into
the prediction model at each boosting round. We stick here to classical
linear trees and forests of trees, such that each weak learner is a weak
classifier prediction model with a pre-specified number of leaves and depth.
Ishida et al. (2020) argued that minimizing the loss function might not be
beneficial below a certain threshold. The authors propose to add a fixed
flood b > 0 to the loss function; thus, instead of minimizing J , the aim is
minimizing the modified loss defined as J̃ = |J − b|+ b. When the training
error is above the threshold b, J and J̃ coincide; instead, when the error
drops below the flood level b, the modified loss J̃ increases again. Hence,
the training error is constrained to wiggle around the flood level b.
This flooded loss function can also lead to a W-shaped test error in boost-
ing: we observed this phenomenon in illustrative examples (MNIST data
and California housing data) and various simulations. Using an information-
theoretic approach, we further explore the model’s behavioral changes after
adding the flood level. We need some notions beforehand; we will use the
notation DX and DY , respectively, to indicate the distribution of the ex-
planatory variable X and the outcome Y of the training data. Information
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theory introduces a new perspective on the relationship between the dis-
tribution of the training data and the model f̂ . The mutual information I
measures the amount of information shared by two random variables and
how much knowing one of the variables reduces uncertainty about the other.
If the two variables are independent, knowing one of them gives no infor-
mation about the second one; thus, the mutual information is zero. Mutual
information definition relies on the Shannon Entropy H or equivalently
on the Kullback-Liebler divergence; further details are found in Cover and
Thomas (2005). With the introduced notation, the mutual information can

be directly applied to study the relationship between the model f̂ and the
training data distribution. Noiseless datasets are defined as ideal datasets,
where the explanatory variables DX contains all causal and necessary infor-
mation to explain the outcome DY . It is possible to find a model f̂ which is
lossless, i.e., perfectly discriminating the training data and achieving zero
classification error. Furthermore, we say that a model f̂ maximally com-
presses the data if it only captures the relevant information from DX for
describing DY . Returning to the prediction model f̂ , mutual information
can be used to study the information shared between the model and the
distributions DX and DY of the training data. A lossless model satisfies
I(f̂ ;DY ) = I(DY ;DX) and it satisfies I(f̂ ;DX) = I(f̂ ;DY ) if it maximally
compresses. Both equations are satisfied in the lossless maximal compres-
sion case. Interpreting the equations, a lossless model contains as much
information about the label as the information shared between the input
features and the labels themselves. Similarly, for maximally compressed
models, f̂ is characterized by sharing the same amount of information with
the labels and the input features distributions; in this contest, losslessness
means that it does lose information from DX when learning DY .
Inspired by Nikolau (2021), we track the model behavior for increasing
boosting rounds by evaluating the entropy-normalized mutual information
among f̂ and DX and the one among f̂ and the target DY . Finally, we can
plot the trajectory on the information plane, where the y-axis represents
the entropy-normalized mutual information among model and covariates
I(f̂ ;DX)/H(DX) and the x-axis is the entropy-normalized mutual infor-

mation among model and outcome I(f̂ ;DY )/H(DY ). We expect to observe

two phases. First, the empirical risk minimization, when both I(f̂ ;DY )

and I(f̂ ;DX) increase; the model learns during this phase to better fit
the training data by extracting information from DX . If the data DX , DY

are noiseless, f̂ potentially achieves zero training error, i.e., losslessness.
In the second phase, the compression, I(f̂ ;DX) starts decreasing, and the

model reduces the information learned from DX , while I(f̂ ;DY ) remains
stable. The model reaches the lossless maximal compression point after the
compression phase if both noiselessness and losslessness are achievable.
Bashir et al. (2020) did not provide evidence of why using the flooded ver-
sion of the loss J̃ potentially causes a double descent behavior of the test
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FIGURE 2. Boosting trajectories in the information plane for various flood levels.

error. We study how substituting J with J̃ influences the boosting model
trajectory in the information plane. We run experiments on multiple syn-
thetic and real-world datasets; Figure 2 and the analysis presented here
refer to the results obtained using a synthetic dataset with 2000 samples,
20 input variables, among which 15 informative and a classification task
with a binary response; the training is composed of 100 boosting rounds,
with learning rate 0.1, and at each boosting round, a tree with maximum
depth 6 is being added. Figure 2 shows the trajectories for increasing val-
ues of flood levels on the information plane: We have highlighted the first
moments when the training and test error are minimized, the margins are
maximized, and the point of maximal compression. The latter can only
be reached after several boosting rounds if the model both maximal com-
presses and is lossless. Without flooding (b = 0), the model minimizes the
test and training errors; as expected, the best generalization is obtained
before ”overfitting” the training data. Furthermore, maximal compression
and margin minimization are obtained almost synchronously. When adding
a flood level b > 0, we see a drastic change in the model’s behavior: The
maximal compression is never reached. This is a natural consequence as the
model cannot thoroughly learn the training samples because of the flood.
Furthermore, the other points change their respective positions when in-
creasing the parameter b. The different behaviors on the information planes
for the various levels of b give insights into the substantial change of the
flooded boosting model. With higher flood levels, the model training is
stopped before compression starts. As described, during the learning pro-
cess, the non-flooded model grows along the y-axis (the learning phase)
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and then decreases along the x-axis (the compression phase). However,
keeping the boosting rounds fixed, when b > 0, this behavior stops. We
still have a learning phase, while the compression phase is missing. All rel-
evant points, the maximum margins point, and the minimum errors are
nevertheless reached during the learning phase; additionally, the lack of
the compression phase implies that the model cannot achieve the maximal
lossless compression.

3 Conclusion

We used boosting models and investigated the relationship between boost-
ing and flooding; in particular, we analyzed the influence of flooding in
boosting models from an information-theoretic perspective. The informa-
tion plane allows us to study how the model behaves through the learning
process and whether there are structural changes explaining the different
behaviors, i.e., a double-descent of the test error. We believe that further
research on regression models as weak learners combined with flooding is
warranted to investigate potential implications for the bias-variance trade-
off in statistical boosting models.
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group Dataninja funded by the German federal state of NRW.
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Abstract: Random forests are a flexible tool for nonparameteric regression mod-
elling. In classical random forests, for each split a subset of all explanatory
variables is drawn uniformly at random. We propose adaptive random forests
(AdaForest), where the probability (weight) of each explanatory variable to be
considered as a splitting variable is not fixed, but is sequentially adapted based
on its selection frequency in previous iterations of the algorithm. Based on a
simulation study and high-dimensional gene expression data we illustrate that
AdaForest can improve the prediction accuracy of classical random forests, par-
ticularly when only a subset of variables (genes) is informative. Furthermore, the
adapted weights can be used to build sparser models with competitive prediction
performance.

Keywords: High-dimensional data; Random forests; Regression analysis; Pre-
dictive modelling; Variable selection

1 Introduction

Classical regression approaches that relate an outcome variable Y to a set
of p explanatory variables X = (X1, . . . , Xp) include linear and generalized
linear models as well as their extensions to additive models. An impor-
tant nonparametric alternative to these classical approaches is recursive
partitioning or tree-based modelling. The main advantage of trees is that
they are able to capture higher-order interactions between the explana-
tory variables and non-linear effects in a data-driven way. As single trees
are often affected by a large variance, it can be beneficial to stabilize the
results by applying ensemble methods such as random forests (Breiman,
2001). Random forests are increasingly used in practice and are subject of

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
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ongoing methodological research. Even though random forests are a very
flexible tool, particularly when the focus is on prediction, the selection of
the most important variables to build a more parsimonious model remains
challenging.
To address this issue, we propose an extension of the classical random
forest algorithm, called Adaptive Random Forests (AdaForest). The ba-
sic concept of AdaForest is to repeatedly run the random forest algorithm
while adapting the probability of each explanatory variable to be consid-
ered as a potential splitting variable (commonly assumed to be uniformly
at random), taking into account the previously performed splits. The adap-
tation is inspired by the Adaptive Subspace (AdaSub) method (Staerk et
al., 2021), focusing on those explanatory variables which turned out to
be “important” (i.e., frequently selected as splitting variables) in previous
iterations. The specific adaptation scheme in AdaForest can also be in-
terpreted as sequential updating of a Dirichlet prior, which is related to
a recent approach that utilizes Bayesian additive regression trees (BART;
Linero, 2018). Our new extension of classical random forests (i) can yield
benefits for prediction, particularly in sparse settings where the number
of informative variables is much smaller than p, and (ii) enables the selec-
tion of a sparser model based on the adapted probabilities. The proposed
AdaForest algorithm makes use of the R add-on package ranger (Wright
and Ziegler, 2017), offering a fast implementation of random forests.

2 Adapative Random Forests

The classical random forest algorithm draws a set of bootstrap samples
from the original sample (yi,xi), i = 1, . . . , n , with n observations and
fits a regression tree to each of the bootstrap samples. Then, for a (new)
observation with explanatory variables x̃, a prediction of the conditional
mean µ | x̃ is obtained by averaging the predictions of the single trees. Each
tree is built by recursively dividing the predictor space into disjoint subsets
(nodes) using binary splits. Splitting is repeated in each newly created node
until a stopping criterion is met. To mitigate the similarity of single trees,
the set of explanatory variables that are candidates for splitting in each
node is a randomly chosen subset of predefined size mtry < p.
We propose to fit the random forest not only once, but to apply the random
forest algorithm repeatedly in an adaptive way. In each iteration of the
proposed AdaForest algorithm the mtry variables are not selected uniformly
at random from the p possible variables, but with specific probabilities
(weights), depending on the selection frequencies in previous steps. More
specifically, the AdaForest algorithm is initialized with equal probabilities

r0 = (r10, . . . , rp0) = (α10/p, . . . , αp0/p) , (1)

where α0 = (α10, . . . , αp0) = (1, . . . , 1) and rj0 = 1/p is the initial weight
for variable Xj . Then, after iteration k of AdaForest the weight of each
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variable Xj is updated via

αjk = αj,k−1 +

ntreek∑
b=1

sb∑
s=1

I(S
(k)
bs = Xj) , rjk =

αjk∑p
l=1 αlk

, (2)

where sb denotes the number of splits in tree b, S
(k)
bs is the selected variable

in split s of tree b, and I(·) denotes the indicator function. According to (2),
the weights are adapted based on the frequency the respective variables
have been selected as splitting variables in the ntreek trees. For simplicity,
in the following we only consider a single tree in each iteration k and di-
rectly adapt the weights (i.e., ntreek = 1). The algorithm terminates when
the stopping criterion ∥rk − rk−1∥∞ < ε , is satisfied, where ε is a conver-
gence limit (e.g., ε = 10−5). Finally, after convergence at iteration K one
can fit the random forest using the adapted weights rK with all available
variables. Alternatively, one can first select a smaller number of s variables
with the highest final weights rK and then fit the random forest including
only this subset of variables, accordingly. As also illustrated in our applica-
tion, this step requires the specification of an appropriate threshold, which
will generally depend on the specific application and modelling aims. Alter-
natively, data-driven approaches for the number of selected variables may
be used (e.g., based on cross-validated prediction performance).
As the classical random forest algorithm, AdaForest also requires the spec-
ification of the following key parameters (see also Boulesteix et al., 2012):
(i) An appropriate criterion for split selection. The most popular choice
for regression is the mean squared error. (ii) Tuning parameters to control
the size of the single trees. Typically one employs a small minimal node
size (mns) criterion, which specifies the minimal number of observations
required in any terminal node. (iii) The number of candidate explanatory
variables (mtry) and the number of trees (ntree), which should be related
to the number of (informative) explanatory variables. Here we use the de-
fault values of the R package ranger, i.e., mns = 5, mtry = ⌊√p⌋ and
ntree = 500 (for fitting the final forest after convergence).

3 Simulation Study

To assess the performance of our proposed AdaForest algorithm we per-
formed a simulation study with 100 Monte Carlo replications. The aim of
the study was to compare the AdaForest algorithm to the classical ran-
dom forest with regard to the predictive performance. We simulated data
with normally distributed outcome yi ∼ N(µi(xi), 1), i = 1, . . . , 500 , and
considered scenarios with p = 25 (low-dimensional), p = 100 (moderate-
dimensional) and p = 500 (high-dimensional) independent standard nor-
mally distributed covariates, where a fraction of 1%, 5% and 15% of the
variables were informative, respectively. Using the informative explana-
tory variables only, the values of µi(xi), i = 1, . . . , 500 , were obtained by
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FIGURE 1. Results of the simulation study. For each of the nine scenarios, the
boxplots show the mean squared prediction errors (MSPE) when fitting a classi-
cal random forest (first boxplots) and the proposed AdaForest, where all (second
boxplots) or only a subset of s explanatory variables (third boxplots) were in-
cluded in the final model (s chosen based on validation sample).

the standardized sum of all main effect terms βjxij , all possible two-way
interaction terms βjkxijxik, and all possible three-way interaction terms
βjklxijxikxil, with βj , βjk, βjkl ∼ U [−0.5, 0.5]. In each Monte Carlo repli-
cation, we generated (i) a learning sample to fit the models, (ii) a validation
sample to determine the optimal subset of s variables to be included in the
final model of AdaForest, and (iii) a test sample to evaluate the mean
squared prediction error (MSPE). We compared the classical random for-
est, the AdaForest algorithm, where all p variables were included, and the
AdaForest algorithm, where only a subset of s variables with the highest
weights were considered for the final forest (the number of variables s was
selected based on minimizing the MSPE on the validation sample).
The results of the nine scenarios are shown in Figure 1. It is seen that
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FIGURE 2. Analysis of the riboflavin data. The boxplots show the mean squared
prediction errors (MSPE) when fitting a single tree, a classical random forest and
the proposed AdaForest, where all (third boxplot) or only a subset of s genes
(indicated in brackets) were included in the final model. The median value of the
best-performing approach is marked by a dashed line.

the performance of the three approaches strongly depended on the num-
ber of informative variables. In the sparse scenarios (upper left triangle)
the AdaForest algorithm clearly outperformed the classical random forest.
The superiority of AdaForest, however, vanished with increasing p and in-
creasing proportion of informative variables. Selecting a small subset of
variables with the highest weights was beneficial in the three scenarios on
the opposite diagonal of Figure 1.

4 Application to Gene Expression Data

As an application we consider a dataset with n = 71 observations on ri-
boflavin production by Bacillus subtilis (Lee et al., 2001), where the out-
come of interest is the log-transformed riboflavin production rate and the
explanatory variables are given by logarithmic gene expression levels for
p = 4088 genes. As in the simulation study, we compared various ap-
proaches with regard to their predictive performance. For this, we gen-
erated 100 subsamples, each of size n = 47 (containing two thirds of the
data), and evaluated the MSPE on the remaining n = 24 observations.
Figure 2 shows the results obtained from fitting a single regression tree, a
classical random forest and the AdaForest algorithm, where all p = 4088
genes (third boxplot) or only a subset of s genes with the highest weights
(fourth to eighth boxplot) were included in the final fit. Results indicate
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that AdaForest outperformed the classical random forest when incorporat-
ing all or a moderate number of genes s (for 128 ≤ s ≤ 2048). The median
MSPE was lowest for AdaForest with s = 512 included variables, while the
performance of AdaForest became worse when the final model was very
sparse. As expected, the single regression tree yielded by far the worst
prediction accuracy. When fitting AdaForest to the entire data, the highest
weights after convergence were obtained for the yxlC and yxlD genes, which
were both more than 20 times the size of their starting values.

5 Conclusion

The proposed AdaForest algorithm adapts to sparsity by sequentially ad-
justing the weights of the candidate variables for splitting in random forests.
Our simulation study and application to gene expression data show that
AdaForest can outperform the classical random forest algorithm in terms
of prediction accuracy, while also enabling the selection of a sparser model.
Our simulations, however, also indicate that AdaForest may not always be
preferred to classical random forests, particularly in less sparse settings.
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Abstract: The expectation-maximization (EM) algorithm is the most common
iterative method employed for maximum likelihood estimation of discrete latent
variable models. A common drawback of this estimation method, along with its
variant named variational EM (VEM), is that it may be trapped into one of the
multiple local maxima of the log-likelihood function. We propose a version of the
algorithm based on the evolutionary approach, which allows us to explore the
parameter space accurately. The proposal is validated through a Monte Carlo
simulation study aimed at comparing its performance with the EM and VEM al-
gorithms by estimating latent class, hidden Markov, and stochastic block models.
Results show a significant increase in the chance of reaching a global maximum
for the proposed evolutionary EM. The efficacy of the proposal is also validated
by applications using longitudinal data on countries’ energy production and in-
teractions between karate club members.

Keywords: Expectation-maximization algorithm; Global optimization; Local
maxima; Maximum likelihood estimation.

1 Introduction

Discrete latent variable (DLV) models have attracted much attention in
statistical literature since they are formulated according to latent variables
having a discrete distribution left unspecified. Among others, they ensure
a high degree of flexibility in modelling complex dependence data struc-
tures (Bartolucci et al., 2022). Maximum likelihood estimation of DLV
models is usually performed through the expectation-maximization (EM)
algorithm (Dempster et al., 1977). When the latter approach is computa-
tionally unfeasible, a variational modification, namely the variational EM

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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(VEM) algorithm (Jordan et al., 1999), represents a popular alternative.
A well-known drawback of both estimation methods is related to the mul-
timodality of the likelihood function, resulting in a potential convergence
of the algorithm to a local maximum. We propose an extension of the EM
algorithm named evolutionary EM (EEM), defined according to the evolu-
tionary algorithm (EA) approach (Ashlock, 2004). At each step of the EEM
algorithm, multiple sets of parameters are evaluated according to a qual-
ity measure, while evolutionary operators, such as crossover and mutation,
ensure an accurate parameter space exploration.

2 Discrete latent variable framework

The key idea of DLV models is to associate observed responses to latent
variables according to a joint probability model. Denoting by Y and U the
sets of observed responses and latent variables, respectively, a DLV model
is characterized by the conditional distribution of the responses given the
latent variables, and by the distribution of the latent variables.
The EM algorithm maximizes the observed-data log-likelihood function
ℓ(θ), expressed in terms of model parameters θ, relying on the complete-
data log-likelihood function ℓ∗(θ). Once the model parameters have been
initialized, the algorithm alternates two steps until convergence: (i) an ex-
pectation step, where the conditional expected value of ℓ∗(θ) is computed
given the value of the parameters at the previous step and the observed
data, and (ii) a maximization step, where the model parameters are up-
dated by maximizing the expected value of ℓ∗(θ).
The VEM algorithm defines instead a lower bound J (θ) for the observed-
data log-likelihood function, to be maximized instead of ℓ(θ). To explore
the parameter space, the choice of multiple sets of starting values for the
model parameters is crucial. The maximum is then taken as the solution
corresponding to the largest likelihood value at convergence. Drawbacks
of this strategy are the high computational time and the fact that the
convergence may be to one of local maxima different from the global one.

3 Evolutionary expectation-maximization algorithm

Following the EA approach, the proposed EEM algorithm is inspired by
the Darwinian theory of evolution principles. According to Pernkopf and
Bouchaffra (2005), it takes into account an initial “population” P0 of NP
potential solutions for the optimization problem at issue. Each element of
P0 is a different candidate array of posterior probabilities. The following
steps are then alternated until convergence:

1. P1 ← Update(P0): population P0 is updated by performing a small
number of cycles of the standard EM algorithm with random initial-
ization on each individual, resulting in a new population P1.
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2. P2 ← Crossover(P1): pairs of individuals from population P1 are
randomly selected and recombined by swapping corresponding blocks
of their arrays. We obtain the NO offspring of the new population P2.

3. P3 ← Update(P2): population P2 is updated by performing a small
number of cycles of the standard EM algorithm with random initial-
ization on each individual, resulting in the new population P3.

4. P4 ← Selection(P1 ∪ P3): individuals from populations P1 and P3

are considered jointly, and the NP with the highest value of the log-
likelihood function are selected for the next generation P4.

5. P5 ← Mutation(P4): variation is introduced to each individual of
population P4 (apart from the best one): given a row of the corre-
sponding array of posterior probabilities, mutation operator swaps
the highest value with a random one.

Convergence of the EEM algorithm is measured focusing only on the best
solution of population P4 and analyzing both the relative difference of the
log-likelihood of two consecutive steps and that between the corresponding
parameter vectors.

4 Simulation studies

To evaluate the performance of the EEM algorithm, we rely on a Monte
Carlo simulation study considering latent class (LC), hidden Markov (HM-
cat and HMcont for categorical and continuous response variables, respec-
tively), and stochastic block (SB) models. This study is based on differ-
ent scenarios for each model, depending on several features: sample size
(n = 500, 1000), number of response variables (r = 6, 12), response cat-
egories (c = 3, 6), time occasions (T = 5, 10), and latent components
(k = 3, 6). Concerning the SB model we also distinguish two different
behaviors: one defined as assortative with high intra-group and low inter-
group connection probabilities and the other as disassortative with low
intra-group and high inter-group probabilities. For each scenario the corre-
sponding model is applied 100 times to 50 samples using the EM and EEM
algorithms. Both correctly specified and misspecified latent structures are
estimated in order to compare the performance of the algorithms through
the following criteria.

Global maximum achievement: considering the highest of the max-
imized log-likelihood values as the global maximum ℓ̂Max, we denote a
generic log-likelihood value at convergence as ℓ̂ and compute the percentage
of ℓ̂ such that (ℓ̂MAX − ℓ̂)/|ℓ̂MAX | < ε̃, where ε̃ is a suitable threshold. The
EEM algorithm performs better in each simulated scenario, significantly
increasing the chance to reach the global maximum. Some results of 2 of
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FIGURE 1. Percentages of global maxima reached using EM and EEM algo-
rithms for (i) a correctly specified LC model with n = 500, r = 6, c = 3, and
k = 6, and (ii) a misspecified HMcont model with n = 500, r = 12, T = 5, and
k = 3.

the 22 simulated scenarios are depicted in Figure 1. In particular, regard-
ing the estimation of models whose latent structure is correctly specified,
the frequency of convergence to the global mode is usually very close to
100%, highlighting that it generally tends to avoid convergence to a local
maximum of ℓ(θ). The results of the extensive simulation study highlight
that the proposal always outperforms the EM algorithm; the improvement
is especially evident with many latent components and under scenarios re-
lated to the SB model. Its performance is even more remarkable considering
models with misspecified latent structures. In this case, while the standard
EM algorithm sometimes proves unable to locate the global maximum, the
evolutionary approach is always able to correctly detect it, improving the
value itself of the global mode, in addition to the chance to reach it.

Average distance from the global maximum: using the EEM algo-
rithm, the distance between each maximum and the global one is quite
low for all the examined scenarios. The average distance obtained through
the EM algorithm is usually considerably higher. We mention for instance
one scenario of the LC model in which the average distance decreases from
4.7 · 10−7 using the EM algorithm to 2.5 · 10−18 using the EEM algorithm.
In scenarios related to the HMcat model the distance is still reduced by
half with the EEM algorithm, dropping, for example, from 1.2 · 10−3 to
6.8 · 10−4.

Accurate parameters estimation: dealing with correctly specified mod-
els, we also provide the root mean square error (RMSE) between the true
and estimated model parameters. Results show the RMSEs obtained with
the EEM algorithm are very close to zero under all the simulated scenarios;
on the contrary, values obtained with the EM algorithm are always larger,
approaching one in some cases. This shows that the evolutionary approach
entails a significantly greater accuracy. In particular, the improvement is
especially evident when the HMcont and SB models are estimated.
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5 Applications

The EEM algorithm is also evaluated to estimate LC, HMcat, HMcont,
and SB models with cross-sectional, longitudinal, and network data.
In the following, as a first application, we use longitudinal data measuring
the sources of electricity generation in 27 European Union countries (data
are available at the link https://ourworldindata.org/energy). A multivari-
ate time homogeneous HMcont model is considered for response variables
collected yearly from 2011 to 2020 and referred to the share of electricity
deriving from biofuel, coal, natural gas, hydroelectric, nuclear, oil, solar,
and wind. Logit and Box-Cox transformations are applied to all the vari-
ables. The model is estimated for a number of states ranging from 1 to
12 with both the EM and EEM 100 times. A model with 8 latent states
representing sub-populations of countries with similar energetic behaviour
is selected according to the Bayesian information criterion. The EEM al-
gorithm ensures convergence to the global maximum, corresponding to a
value of the log-likelihood function equal to −5, 452. The EM algorithm
never detects such a maximum, providing −5, 574 as the highest value for
the log-likelihood function at convergence. The estimation with the EEM
also provides a reasonable posterior dynamic classification of the countries
into groups, while EM does not. Table 1 reports the estimated conditional
means of the responses given the latent state. Groups are ordered from
the lowest to the highest average value of wind power. Countries in the
1st group are using mainly nuclear power, in the 2nd are predominantly
coal-dependent, in the 3rd heavily rely on oil, in the 4th they use a mix of
coal, oil and gas, along with the highest average of solar energy. Countries
in the 5th state are using mainly gas, in the 6th they use gas and a quota
of biofuel over all the other groups, in the 7th they excels in hydroelec-
tric power, and in the 8th they use mainly wind energy along with nuclear
power.
As a second application, we estimate the SB model with network data on
34 karate club members (data are available in the R package igraphdata).

TABLE 1. Estimated means of the HMcont model with k = 8 latent states for
the European Union countries electricity data.

Latent states

Source 1 2 3 4 5 6 7 8

Coal 5.58 41.91 4.52 38.52 14.86 0.00 20.57 15.10
Oil 3.62 2.85 51.80 10.77 6.62 3.97 3.55 3.04
Gas 5.34 12.24 7.20 24.53 57.43 44.52 21.06 19.87
Nuclear 50.21 19.96 0.00 0.00 1.42 0.00 13.20 31.94
Biofuel 7.68 4.55 4.77 0.53 3.17 12.35 2.92 9.65
Hydro 22.12 9.85 24.50 8.96 1.12 21.16 19.05 0.39
Solar 0.90 3.41 1.70 6.62 2.51 3.34 2.89 2.48
Wind 4.52 4.87 5.48 10.08 12.87 14.66 16.63 17.53
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FIGURE 2. Graph visualization with nodes colored by estimated partition for
the SB model with k = 6 latent blocks for the karate club data.

Relationships among members are measured by a 34×34 adjacency binary
matrix. Using the EEM algorithm, an SB model with k = 6 latent blocks is
selected according to the integrated classification likelihood criterion. The
EEM algorithm consistently converges to a log-likelihood function value
equal to −277.91; if the model is estimated with the EM algorithm its
highest value is −316.46. Figure 2 shows the network with nodes colored
by the estimated partition. The model correctly identifies positions taken
for president (A, in blue) or instructor (H, in violet). The faction led by the
president consists of a single additional latent block (in red), presenting a
high connection probability with its leader (equal to 0.75). The remaining
three latent blocks (depicted in pink, green, and yellow) constitute the
faction led by the instructor; each of these blocks has a high connection
probability with their leader (equal to 0.81, 1.00, and 1.00, respectively).
Connection probabilities between blocks of different factions are very low
(0.17 at most).
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Abstract: Cause of death data provides additional insight on the future trends of
mortality, as well as provide valuable information for governments and insurance
companies. Models that fit and forecast by cause of death come across several
methodological problems, one of them being the inconsistency between individual
estimation and forecast of mortality per cause of death and an all-cause scenario.
We propose a clear-cut and fast method to obtain coherent cause-specific mor-
tality trajectories based on Lagrange multipliers. We apply the method proposed
to fit and forecast mortality of males in USA for the most five leading causes of
death.
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1 Introduction

Overall mortality trends are the summation of cause-specific mortality
experiences. Consequently modelling and forecasting changes in cause of
death patterns allows us to recognize the drivers of all-cause mortality
and identify emerging health challenges. On the one hand, early litera-
ture has argued that all-cause mortality projections based on cause-specific
mortality present serious drawbacks (Wilmoth, 1995). On the other, some
approaches for forecasting cause-specific mortality has been recently pro-
posed, though either based on the Lee-Carter model and for specific cause
(Kjærgaard et al., 2019) or on a Bayesian hierarchical model aiming to
forecast cause-specific death rates for geographic subunits (Foreman et al.,
2017).
When dealing with cause-specific mortality, we need to ensure that cause-
specific deaths must sum to the total number of deaths. In the following,
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we model log-mortality in a Poisson setting for each cause assuming only
smoothness over age and time. The summation constraint thus become
non linear with respect to the estimated coefficients. We embed the whole
approach in a Generalized Linear Array Model framework (GLAM, Currie
et al., 2006) in which Lagrangian multipliers are iteratively updated to
enforce constraints.

2 The model

We have deaths, and exposures to the risk of death, arranged in two three-
dimensional arrays, Y = (yijk) and E = (eijk), each m × n × k, whose
rows, columns and layers are classified by age at death (a), year of death
(t) and cause of death (c). For ensuring coherence in the model, the final
layer of Y contains total number of deaths (that is, k =number of causes
of death+1). Note that each layer in E includes the same age-year matrix:
we are in a competing risk setting. We assume that the number of deaths
yijk is Poisson distributed with mean µijkeijk. The value of µijk, commonly
named force of mortality, is the object of all mortality models.
In the following we will illustrate the method for United States, males by
age-groups 30-34, . . ., 95-99, 100+, years 1978-2018 and the following five
coherent groups of causes of deaths: Cardio-vascular diseases, Neoplasms,
External causes, Diseases of the respiratory system and Other diseases
(Human Cause-of-Death Database, 2023). We forecast total and cause-
specific mortality up to 2040.
With k − 1 causes of death, we deal with a three-dimensional setting. The
vectorized linear predictor is given by η = Bα where the design matrix is
B = Ik ⊗Bt ⊗Ba. We use a rich basis of B-splines for age and year, and
smooth surfaces are then obtained by marginal penalization. With no sum-
mation constraint the model simply reduces to a series of two-dimensional
GLAMs.
To hinder singularity issues in the resulting scoring algorithm, we enforce
our constraint for a large number of equally-spaced data-points. Smooth-
ness will guarantee the remaining coherence between cause-specific and
overall mortality. The penalized 3D GLAM is then subject to

C exp(η) = 0 (1)

where C sums up, for the large selected number of age and years, cause-
specific deaths and then subtract the associated total number of deaths.
The matrix C can be written as a Kronecker product C = Cc ⊗Ct ⊗Ca

and therefore, as for the linear functions and the inner products within
the scoring algorithm, it can be included as a sequence of nested matrix
operations in a GLAM framework.
The use of Lagrange multipliers ω for each age-year ensures that the con-
straint is enforced, yielding the following constrained penalized Poisson
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log-likelihood:

ℓP = y′Bα− e′ exp(Bα)− 1

2
α′Pα− ω′CE exp(Bα). (2)

We compute the derivatives of (2), and by means of Newton-Raphson we
find the following scoring algorithm:[

BTW̃B + P + BTdiag(CTω̃)Ṽ B BTṼ CT

CṼ B 0

] [
α̃
ω̃

]
=

[
BTW̃z + BTdiag(CTω̃)Ṽ Bα̃

CṼ Bα̃−Cγ

]
(3)

where γ = expη, V = diag(γ). W and z are the Poisson regression
weights and working response, respectively. The penalty P ensures smooth-
ness over age and time for each cause and it has a block-diagonal structure.
In order to handle k−1 causes of death across different age groups and years,
we face the challenge of optimizing 2 · k smoothing parameters. To avoid
dealing with such a high-dimensional optimization problem, we decided to
utilize the smoothing parameters optimized by BIC when estimating each
cause-specific age-time matrix independently.
Confidence intervals for the estimated mortality surface are calculated by
stepping into the Bayesian framework, therefore:

Var(Bα̂) = BRBT ,

where R is the top left block of the inverse of the matrix on the left hand
side of (3). Of course, if there are no constraints, i.e ω = 0, we obtain the
usual expression of the variance.
As in Currie et al. (2004) we treat forecasting as a missing value problem
and we add shape constraints to enforce future cause-specific mortality
patterns to lie within a range of valid profiles computed from observed
trends (Camarda, 2019).

3 Results

We fitted the proposed model to the US male mortality data described in
the previous section. The left panel of Figure 1 shows actual, estimated and
forecast log-mortality for a selected age (50) over years along with their 95%
confidence intervals. The proposed model is able to well described historical
cause-specific patterns as well as to reasonably extrapolate them into the
future. The right panel of Figure 1 presents estimated death counts for a
specific year (2000). Here one can easily acknowledge the equality between
the sum of cause-specific deaths and the total number of deaths which is
enforced by the non linear set of constraints in (1). Equally satisfactory
outcomes are achieved for all ages, years and causes of deaths.
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FIGURE 1. Left panel: observed, estimated and forecast cause-specific mortal-
ity rates over years for age 50 (log-scale) along with associated 95% confidence
intervals. Right panel: Estimated cause-specific death counts over age-groups for
year 2000. In both panels, total mortality and total number of deaths are plotted.
USA, males, ages 30-100, years 1978-2018, forecast up to 2040.

In Figure 2, a commonly used summary indicator is presented: life ex-
pectancy, here at the starting age of 30. We compare our model with a
estimates obtained on overall mortality using P -splines with shape con-
straints (Camarda, 2019). While the fitted values for the observed time-
window are practically identical, noticeable differences emerge when mak-
ing forecasts. When accounting for cause-specific patterns and ensuring
that cause-specific deaths add up to the total number of deaths, the mod-
eling of mortality yields slightly more pessimistic prospects: remaining life
expectancy in 2040 at age 30 is forecast to 50.67 years in our model com-
pared to 51.16 years in the alternative approach.
Of even greater significance is the notable reduction in the confidence in-
tervals, indicating a significant decrease in future uncertainty around over-
all mortality when cause-specific trends are incorporated into the model.
This outcome was expected, given the inclusion of substantial information
through the incorporation of what we referred to as the summation con-
straint.

4 Conclusions

In the presented study, we propose a novel approach to model and forecast
cause-specific mortality. By combining penalized likelihood and iteratively
computed Lagrangian multipliers we obtain smooth cause-specific mortal-
ity surfaces over ages and time, and we simultaneously enforce the necessary
constraints in this setting: cause-specific deaths sum to the total number
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FIGURE 2. Observed, estimated and forecast life expectancy at age 30 along with
associated 95% confidence intervals. Proposed model estimating cause-specific
and overall patterns with summation and shape constraints is compared with a
simpler approach without summation constraint. USA, males, ages 30-100, years
1978-2018, forecast up to 2040.

of deaths. Forecasting comes naturally in this setting and constraints are
satisfied into future years, too. Additional shape are necessary to demo-
graphically informed projected patterns.
In the example analysis of US mortality, focusing on the five leading causes
of death, the proposed model yields lower overall future life expectancy
compared to similar models. Additionally, it exhibits remarkably narrower
future uncertainty.
Moving forward, we intend to investigate other scenarios where coherence
constraints may be required, such as mortality by region, sex, and other
factors. Furthermore, we have plans for a comprehensive validation study
to evaluate the accuracy of future point estimates and the coverage of
associated confidence intervals.
Last, Covid-19 pandemic clearly taught us that forecast future mortality
by extrapolating past trends can no longer be tacitly assumed. Accounting
for the impact of such short-term shocks will be a clear challenge for further
mortality forecasting research as well as for our model.
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Abstract: Spatial heterogeneity of cells in liver biopsies can be used as biomarker
for disease severity of patients. This heterogeneity can be quantified by non-
parametric statistics of point pattern data, which make use of an aggregation of
the point locations. The method of aggregation, however, is not standardized but
generally chosen by the author, as dimensions, scale or other specifics of a problem
tend to call for methods tailored to them. Increasing spatial resolution will not
endlessly provide more accuracy, as limiting each grid cell to only a few data
points might not yield as much information about heterogeneity between species
in the sample. The question then becomes how changes in grid choice influence
heterogeneity indicators derived from this grid aggregation, and subsequently
how they influence predictive abilities of these indicators. The aim of this paper
is to analyze this issue by evaluating different heterogeneity indicators on the
predictive performance.
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1 Methods

1.1 Data

The data used in this analysis contained 110 liver biopsies that were col-
lected from chronic hepatitis B patients. Immunofluorescent staining and
subsequent cell segmentation was applied to the biopsies to identify each
cell’s two-dimensional (x and y) coordinates and the cell type. Cell types in-
clude HBsAg-positive, HBsAg-negative, or immune cells. HBsAg-negative
cells will be referred to as type 1, immune cells as type 2 and HBsAg-
positive cells as type 3. For each patient, a pathologist assessed the fibrosis
stage of the liver, resulting in a a categorical score ranging from 0 to 4. Some
scores were uncertain, and are available as interval censored observations.

1.2 Penalized ordinal regression model and used covariates

Spatial measures are used to quantify heterogeneity amongst biological
cells, hereafter referred to as points. Commonly used measures of spatial
heterogeneity of point pattern data are the Morisita-Horn index, the Shan-
non diversity index and the Getis-Ord hotspot analysis. These measures
are based on a discretization of the spatial point pattern data by dividing
the window into grid cells of the same size. In the following formulations,
i denotes the index of a grid cell, cki denotes the number of points of type
k in grid cell i, pki denotes the ratio of cki to the total number of points
in grid cell i, and nk denotes the total number of points of type k. The
Morisita-Horn index (MHI) by Horn (1966) was used as a global spatial
summary statistic. The formula of the index is defined as

M =
2
∑
i
cki
nk

cli
nl∑

i(
cki
nk )2 +

∑
i(
cli
nl )2

.

The index is a measure calculating the heterogeneity of two point types k
and l given their spatial distribution in the grid. This index ranges from
0 to 1, indicating complete homogeneity at value 0, and complete hetero-
geneity at value 1. Since this is a pairwise statistic, this was done for each
pairwise combination of the three point types studied in this paper.

The Shannon diversity index (SDI), analogous to the Shannon (1948) en-
tropy in information theory, was also used as a global spatial summary
statistic and is an index measuring diversity per grid cell. The formula of
the index is defined as

Si = −
3∑
l

pli log(pli).
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This index was calculated for each grid cell individually and thus requires
to be summarized to give information about the entirety of the sample.
Both the mean and variance of Shannon indices across all grid cells are
used as a summary measure of heterogeneity.

The Getis-Ord hotspot analysis by Getis and Ord (1992) was used as a
local spatial summary statistic. Formally, in grid cell i, the z-score is de-
fined as:

z =

∑N
j=1 wi,jc

l
j − cl

∑N
j=1 wi,j

SU
,

with normalizing factors

S =

√∑N
j=1(clj)

2

N
− (cl)2,

U =

√
N
∑N
j=1 w

2
i,j − (

∑N
j=1 wi,j)

2

N − 1
,

where wi,j is the binary indicator whether grid cell i and j are neighbors,
cl is the mean of the points in the grid cells and N is the total amount
of non-empty grid cells. In its algorithm, a z-score is calculated compar-
ing the count in a grid cell and its neighboring grid cells (depending on
a chosen neighborhood structure) with the expected number of points. A
significantly high and low z-score were defined respectively as a hotspot
or coldspot. Both ratios of total hot- or coldspots of each type as well as
total colocalized hot- or coldspots of different types were used a summary
measure of the entire sample.

The choice of grid cell size influences the discretization process and there-
fore the summary statistics used in this study as specified below. The size
of each grid cell was therefore investigated, and chosen for each biopt sepa-
rately so that the mean amount of points per grid cell approaches the same
value (pre-specified values are 5, 10, 15, 20, 25, 50, 100, 200, 500 and 1000).

The predictive performance of both the spatial (local and global) and non-
spatial (i.e. percentage of points of a specific type within the whole sample)
summary measures towards the fibrosis stage were subsequently investi-
gated, using an ordinal regression model with L1 type penalization. The
OrdinalNet package, made by Wurm et al. (2017), was used in R to con-
struct a forward cumulative probability logit model, with formula

logit(P (Yi ≤ m|xi)) = αm + xTi β,

where Yi is the fibrosis score as ordinal category ranging from 0 to 4 for ob-
servation i = 1, ..., N with N being the amount of observations, m is one of
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said five ordinal categories, xi is the vector of covariate values with length
P , where P is the amount of covariates, αm is the outcome specific intercept
and β is the vector of weights corresponding to the covariates, with length
P . A Least Absolute Shrinkage and Selection Operator (LASSO) type pe-
nalization was added by adding a term directly related to the magnitude
of covariate weights to the likelihood function to be minimized, inhibiting
covariate influence. The formula of the to be minimized function is then

M = − l

N
+ λ

P∑
j=1

|βj |,

where l is the loglikelihood of the cumulative probability logit model, N
is the number of samples, λ is a tuning parameter, P is the total number
of covariates and βj is the weight corresponding to covariate j. The Or-
dinalNet package uses a coordinate descent algorithm, providing an initial
output of a selection of models ranging from low to high covariate usage,
and the AIC minimized model was considered in the following analyses.
Interval censoring of disease severity was accounted for in the model, using
a weighted likelihood approach.
The performance of different model subtypes were investigated: a model
including all covariates (M1), a model with only local covariates (M2),
with only global and nonspatial covariates (M3) and a model with only
local and global covariates (M4).

1.3 Simulated data

To validate the proposed methods and illustrate the influence that grid cell
sizes have on these methods, a simulation study was performed. Similar to
the data, point patterns were simulated corresponding to five categories of
disease stage. For each category, 20 point patterns were simulated for each
of the categories according to a clustering algorithm with ’parent points’
for each point type, and with each category having some increasing or
decreasing setting related to the diversity of point types.
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2 Results & Discussion

The predictive ability of the fitted OrdinalNet models was measured by
a leave-one-out-cross-validation (LOOCV) for each combination of model
type (M1-M4) and grid choices with which the covariates were calculated.
Figure 1 shows the results of the predictive power of the models.
In both real and simulated data, the model subtype where only local co-
variates were included generally displayed a downward trend in predictive
ability as grid cell size increased. This trend was also reflected in the real
data in the dwindling importance of the local covariates due to a lack of
information at larger grid sizes. Even models M1, M3 and M4 had a drop-
off in predictive quality in the largest choice(s) of grid size. While for local
measures a smaller grid-size outperforms larger grid-sizes, global measures
have a better performance with medium-sized grids. In conclusion, across
all data and models, trends are not unambiguously apparent, and there is
no ’one-size-fits-all’ solution. We do recommend the use of small grid sizes
(on average 5-10 points per grid cell) when using the local measure, as it
quantifies locally the heterogeneity of point types as well as its interaction
amongst point types. A medium grid size is recommended for global in-
dicators (20-30 points per grid cells), which is required for a more stable
estimation of the global measure. The use of both global and local measures
of heterogeneity improve the predictive performance.
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FIGURE 1. Performance and variable importance of actual data as a function of
the grid size. Columns indicate the results from the model where respectively all
(M1), only local (M2), global and nonspatial (M3), and local and global covari-
ates (M4) were included. The top panel shows LOOCV results, with the perfect
prediction % in green and one-off % cumulatively in green and blue with black
lines indicating 25, 50 and 75%. The bottom panel shows variable importance,
where from top to bottom respectively nonspatial, global and local covariates are
shown and divided by white lines. Y axis label Pi refers to proportion of type
i, SH v and SH m refer to variance and mean of the Shannon indices, MHi&j
refers to the pairwise Morisita-Horn index of types i and j, Hi and Ci refer to
hotspots and coldspots of type i, e.g. H1&C2 refers to the colocalization of type
1 hotspots and type 2 coldspots.
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Abstract: The natural history of prostate cancer can be modelled using a
continuous Markov model and can be used to evaluate screening strategies. The
mean time between the onset of the preclinical screen-detectable cancer and the
onset of the clinical state; the mean sojourn time, can be estimated. The data used
are from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening
Trial, and the methods develop will account for the use of interval-censored, left-
truncation, and right-censored data. The model will include longitudinal PSA
measures from the screened population.
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1 Introduction

Specifically for cancer settings and chronic disease in general, the sojourn
time, the time spent in the detectable preclinical phase (PCDP); can be
informative for the design of screening programs.
Prostate cancer is the second most commonly diagnosed cancer in men. The
prostate-specific antigen (PSA) test measures the PSA levels in the blood.
A PSA level above 3.0 or 4.0 ng/mL can be considered abnormal. However,
different factors can cause the PSA level to fluctuate. The PSA levels can
be used to assess if further clinical diagnosis is required; i.e. imaging or
biopsy studies. Screening based on the PSA test can lead to overdiagnosis
and false-positive screening results.
In this study, we consider panel data, a series of observations for each
individual at a sequence of time points, where the sampling times vary
across individuals. The data are from the (PLCO) Cancer Screening Trial.
Bhatt et al (2021) developed a multi-state model for the natural history
of prostate cancer, that accounts for interval-censored, left-truncated, and

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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FIGURE 1. Six-state progressive model for prostate cancer. The first three states
are defined by discretising the PSA scale.

right-censored data. It also incorporates age-varying hazards and misclas-
sification, using data on nonscreened participants. The aim is to extend
the model by Bhatt et al (2021) by including the PSA test level to inform
screening frequency and to assess the outcome of screening in detecting
cancer and preventing cancer death. The process is illustrated in Fig. 1.
As a first approach, we will impute the first PSA value to the control group
by sampling from the PSA distribution from the screened group. Further
in the project, we will explore different methods to take into account the
first observed state for the control group. Furthermore, the methods will
account for misclassification and mismeasured data.

2 Methods

2.1 Multi-state model

Let {Yt | t ∈ (0,∞)} be a continuous Markov chain on the state space S,
and let P (t, u) be the D × D transition probability matrix with entries
prs(t, u) = P (Yt = s | Yu = r) , for 0 ≤ t ≤ u, and r, s = 1 . . . D.
The transition probabilities can be derived from the transition hazards,
P (t, u) = exp((u − t)Q(t)), where Q is the D × D generator matrix with
off-diagonal (r, s) entries qrs and diagonal entries qrr = −

∑
s̸=r qrs.

The transition-specific hazards can be defined by combining a baseline haz-
ard with a log-linear regression

qrs(t | x) = qrs.0(t) exp
(
β⊤
rsx
)
, (1)
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where βrs = (βrs.1, . . . , βrs.p)
⊤

is a parameter vector, and x = (x1 . . . xp)
⊤

is the covariate vector. The baseline hazard qrs.0(t) describes the hazard’s
time dependency.

2.2 Estimation

Considering interval-censored observations, the maximum likelihood is con-
structed with the transition probabilities (Kalbfleisch and Lawless, 1985).
Assuming the transition time into the death state D is known, and letting
the living states be indexed by 1, 2 . . . D − 1. For an individual i with ob-
servation times t1, . . . , tn, and an observed trajectory of states y1, . . . , yn,
the likelihood contributions for interval the (tj−1, tj) is given by

=

J−1∏
j=2

P (Yj = yj | Yj−1 = yj−1, θ, x)

C (yJ | yJ−1, θ, x) ,

where θ is the vector of parameters, and x is the covariate vector. If tj is
a living state then C (yj | yj−1, x) = P (Yj = yj | Yj−1 = yj−1, θ, x), and if
death is observed at tj then

C (yj | yj−1, x) =

D−1∑
s=1

P (Yj = s | Yj−1 = yj−1, θ, x) qsD (tj−1 | θ, x) .

The probability transition matrix is computed using the eigenvalue-decomposition
method, and the log-likelihood is maximised using the Nelder-Mead opti-
misation method from the general purpose optimiser optim, R-package.

2.3 Single imputation

Imputation is a versatile method for handling missing data. There are two
generic approaches; explicit and implicit modelling. Explicit modelling as-
sumes that the predictive distribution for the imputation values follows a
known probability density function, e.g., a multinomial distribution, and
samples the values explicitly from that distribution. Implicit modelling is
based on methods which rely on underlying model assumptions. In this
case, we use explicit methods, following a multinomial distribution (Little
et. al, 2002).

3 Application

The PLCO trial included 76, 685 men who were randomised in screening
and control group. The screening group received an annual PSA test for 6
years and an annual digital rectal examination for 4 years. The men were
aged 55 to 74 years and followed up for a median of 13 years.
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FIGURE 2. PSA distributions for the age interval [50, 60] from the screened group
from the PLCO data set.

To state
From state Censored 1 2 3 4 5 6

1 50677 127057 3661 134 589 5487 11344
2 2874 2108 6107 363 765 656 712
3 244 106 197 380 120 72 79

TABLE 1. PLCO data state table.

As a first approach, we extend the healthy state (state 1) by discretising the
PSA test value. The process is illustrated in Fig. 1. Given that the control
group is not screened, there are no PSA test results for these individuals.
However, we can impute these values using the screened group PSA distri-
bution, by defining an age interval and assigning the first observed state to
the control group. For instance, we can look at the PSA value distributions
for the age interval [50, 60]. See, Fig. 2.
In Fig. 2 we can see that the three PSA distributions for the age interval
[50, 60] are positively skewed, and it seems to follow a bimodal distribution,
which is concentrated between [0, 2], and [4, 6]. Furthermore, we can see the
variability within the PSA test results.
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Parameter Estimate S.E.

β12 = β23 -3.360 1.224e-04
β21 = β32 -1.191 2.028e-04
β14 = β24 = β34 -4.551 6.499e-05
β45 -0.338 4.025e-07
β16 = β26 = β36 = β46 -4.222 3.326e-05

TABLE 2. Estimated parameters for exponential model on prostate cancer screen-
ing data. S.E. stands for standard errors.

As a first approach, we imputed the first PSA value to the control group by
sampling randomly from the PSA distributions from the screened group.
Further in the project, we will explore different methodologies to deal with
missing data that accounts for the variability of the estimates. The state
table with the imputed PSA values for the control group is shown in Table
1.
Before modelling age-dependent hazards, an exponential model can be fit-
ted; hrs.0(t) = exp (β0.rs). Following the model assumptions for competing
risks in survival defined by Bhatt et. al (2021), the parameters constraints
for this model are such that β16 = β26 = β36 = β46. Furthermore, the for-
ward and backward hazards within the three healthy states are restricted
such that β12 = β23, and β21 = β32. The results of the exponential model
can be seen in Table 2. The model was fitted using the msm package in R
with the Nelder-Mead optimisation method, allowing for 10, 000 iterations
and using the crude estimates of the transition hazards as initial values.
Following an exponential model, the sojourn time in state 4; i.e. the ex-
pected time in the screen detectable state can be derived as 1

exp(β̂45)+exp(β̂46)

which equals 1.373 years.
This model will be extended to consider age-varying hazards and misclassi-
fied and mismeasured data. Further methodologies to deal with the missing
PSA values from the control group will be explored, accounting for the vari-
ability of the estimates given that imputed values are not actual observed
values and the uncertainties associated with the imputations need to be
addressed appropriately. These methods are particularly interesting given
that the estimation of the transition to the clinical state will include both;
screened and non-screened populations.
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Abstract: We develop a Bayesian smoothing model that learns about the dy-
namics governing joint extreme values over time. We resort to a suitable class of
generalized linear models, conditioned on a large threshold to devise a class of
dual measures of time-varying extremal dependence. An illustration of the pro-
posed methods to some leading European stock markets reveals some intricate
extremal dependence patterns over the past 30 years.
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1 Introduction

Statistics of extremes is tailored for extrapolating into the tail of a distribu-
tion beyond observed (Coles, 2001). In a multivariate framework, methods
of statistics of extremes can be further used for assessing the dependence
between the extreme values of a random vector.

This note adds to the current body of literature on multivariate non-
stationary extremes, which can be applied to monitor the dynamics of
extreme dependence over time and evaluate how covariates affect the struc-
ture of extremal dependence. Specifically, below we introduce a Bayesian
time-varying model that infers about the dynamics that regulate the co-
movements of extreme values over time. We will utilize two time-varying
versions of well-known measures of tail dependence as our starting point
for modeling; see χt and χ̄t below. A suitable class of generalized linear
models is then devised that can be used to infer about the dual measures
of time-varying extremal dependence, conditional on a large threshold. To
learn about the nonstationary patterns of the time-varying dual measures
of extremal dependence from data, we then employ a Bayesian P-spline
(Lang and Brezger, 2004) approach.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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2 A P-spline model for time-varying extremes

The parameters of interest and their specification: We start by
laying the groundwork. Observations are assumed to be generated by a
discrete-time bivariate stochastic process {(Xt, Yt)}nt=1 with standard unit
Fréchet marginal distributions, that is, Xt ∼ FXt

and Yt ∼ FYt
with

FXt(x) = FYt(x) = exp(−1/x), for x > 0 and t ∈ {1, . . . , n}. To track
the dynamics governing extremal dependence over time, define the time-
varying coefficients of extremal dependence as

χt = lim
u→∞

P (Xt > u | Yt > u), (1)

and

χ̄t = lim
u→∞

2 logP (Xt > u)

logP (Xt > u, Yt > u)
− 1, (2)

for 1 ≤ t ≤ n. The goal below is to develop models for (1) and (2) and to
learn about these quantities from data.

Our specification for χt is semiparametric and entails an inverse link
function, F : R→ [0, 1] and a smooth function g(t). Specifically, we set

χt ≈ P (Xt > u | Yt > u) ≡ F{g(t)}, (3)

as u→∞. The inverse link function F enforces the parametric constraint
that the conditional survival probability is contained between 0 and 1, i.e.
0 ≤ χt ≤ 1, whereas the smooth function g reflects the effect of time on
the tail dependence. In terms of χ̄t, we follow a similar line of attack and
specify

χ̄t ≈ 2H{l(t)} − 1, (4)

as u → ∞. Here, H : R → [0, 1] is an inverse link function, and l(t) is
a smooth function. We complete the model specification by modelling the
smooth functions using B-splines. Consider m + 1 equally-spaced knots,
t0 < · · · < tm. The smooth functions are then modelled as

g(t) =

K∑
k=1

β
(g)
k Bdk(t), l(t) =

K∑
k=1

β
(l)
k Bdk(t), (5)

where Bdk(t) is a B-spline basis function of degree d evaluated at time t and
K = d+m.

Learning from data: To learn about χt and χ̄t it is key to note that

It ∼̇ Bern(F{g(t)}), Et ∼̇ Exp(H{l(t)}), (6)

as u→∞, where Zt = min(Xt, Yt) and

{It} = {1{Xt>u} : Yt > u}, {Et} = {log(Zt/u) : Zt > u}.
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The goal is hence to learn about χt and χ̄t from kI = |{It}| and kE = |{Et}|
pseudo-observations from {It} and {Et}, with | · | denoting cardinality. To
learn about the coefficients of B-splines in (5) we use the Bayesian P-
spline approach of Lang and Brezger (2004). To ease notation we focus on
presenting the details for a single β = (β1, . . . , βK)T, rather than for both
β(g) and β(l). We assign a first-order random walk prior to the coefficient
vector β = (β1, . . . , βK)T of each smooth function, which specifies a priori
that the neighbouring components of β are related via an independent and
identical Gaussian error εk with mean zero and variance τ2; that is, we set

βk = βk−1 + εk, εk ∼ N(0, τ2), (7)

for k = 2, . . . ,K, and set a flat prior for the initial coefficient β1. The first
order random walk prior can be represented in a matrix form Dβ, where
D is a difference matrix of dimension (K − 1)×K. The matrix D has 1’s
in diagonal elements (i = j), -1’s in the next elements from the diagonal
(i = j + 1), and 0’s otherwise for i = 1, . . . ,K − 1 and j = 1, . . . ,K. The
variance τ2 controls the degree of smoothness of the smooth function (say, g
or l); a small value of τ2 results in a less wiggly curve, as each component of
β tends to be close to the value of its neighbouring component. Accordingly,
the conditional probability of the regression coefficients β given τ2 is

π(β | τ2) ∝ exp

(
− 1

2τ2
βTKβ

)
, (8)

where K is a penalty matrix, K = DTD. In the full Bayesian setting,
the smoothing parameter τ2 is also estimated along with the regression
coefficients by assigning an hyperprior distribution to it. Finally, we place
a diffuse Inverse Gamma prior τ2 ∼ IG(a0, b0) with a0 > 0 and b0 > 0.

3 A real data illustration

We now illustrate the proposed methodology on data from some leading
European stock markets (CAC 40, France; DAX 30, Germany; FTSE 100,
UK). The focus of the analysis will be on assessing the dynamics governing
the dependence of extreme losses between FTSE 100 against CAC 40 and
DAX 30. We obtained the closing daily stock index levels for the analyzed
markets from Datastream, and the sample period ranges from March 5th,
1990 to May 4th, 2020. Since our focus is on (extreme) losses, we work with
negative daily returns. Following standard practice in related literature
(e.g., Castro et al., 2018), returns are filtered using GARCH(1,1) model,
and transformed into unit Fréchet margins. Finally, we threshold the data
by using the 95% quantile to pairwise minima Zt = min(Xt, Yt), and obtain
the pseudo-samples {It} and {Et}, per market. As can be seen from Fig. 1,
for the first two decades extreme joint losses of UK–FRA and UK–GER
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FIGURE 1. Left: Scatterplot of log transformed data. Middle and Right: Posterior
mean time-varying χt and χ̄t (solid) along with credible bands; the rug in the
middle panel corresponds to the points {(t, 1{Xt>u}) : Yt > u} whereas the dashed
red line corresponds to the available values from the subperiod analysis of Poon
et al. (2003).

exhibit clear evidence for an increasing extremal dependence. Extremal
dependence peaks right after the around the 2009 subprime crisis, it goes
down, and it finally increases again around 2017, when the UK invocation
of Article 50 of the Lisbon Treaty for Brexit took place.

Acknowledgments: Special thanks to CEAUL (Centro de Estat́ıstica e
Aplicações da Universidade de Lisboa) for funding.
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Abstract: Sigmoidal curves, very common in epidemiology and biology, have tra-
ditionally been fitted using parametric models or fully non-parametric approaches
like splines. In this paper, we propose a semi-parametric approach which is flexible
enough to capture several sigmoidal shapes. The estimation procedure is itera-
tive and relies on a first-order Taylor expansion around the inflection point. The
performance of our approach is compared to some parametric models through a
simulation study and an application to data. Results of simulations show that our
approach performs well in terms of mean integrated squared errors in a variety
of scenarios.
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1 Introduction

Growth curves are a very common tool to model both observational and
experimental data in epidemiology and biology. Indeed, many phenomena,
modelled as functions of some predictors, assume a sigmoidal shape, i.e.
they show an increasing trend up to a certain point, from which the growth
decelerates and stabilises to an asymptotic level. Examples include bacterial
growth and neurological disorders like Huntington’s disease. In the litera-
ture, many parametric models have been proposed to estimate this kind of
curves, such as logistic, Gompertz and Weibull, most of which were proved
to belong to a unified family (Tjørve and Tjørve, 2017). As an alterna-
tive to a fully parametric specification, other authors used non-parametric
methods like splines (Aggrey, 1991), which can easily adapt to observed
data, guaranteeing good fits, but have no interpretable parameters.
In this article, we propose a compromise between the two above: a semi-
parametric approach. The model is based on two pieces of curves joining
at the inflection point of the sigmoidal curve, and it is flexible enough to

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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β0 = 0.8, β1 = −1.4, β2 = 0.7
θ1 = 0.8, θ2 = 4
ψ = 4.5

right.up asym = 0.8
left.low  asym = −0.25

β0 = 2, β1 = −0.3, β2 = 1
θ1 = 0.3, θ2 = 1
ψ = 5.5

right.up asym = 2.85
left.low  asym = 2.2

β0 = 0.6, β1 = 0.8, β2 = −1.5
θ1 = 0.7, θ2 = 1.2
ψ = 5.5

right.up asym = −0.5
left.low  asym = 0.65

β0 = 0.4, β1 = 0.7, β2 = 0.9
θ1 = 0.7, θ2 = 1
ψ = 3

right.up asym = 1.65
left.low  asym = 1.55

β0 = 1, β1 = −2, β2 = 0.556
θ1 = 0.5, θ2 = 1.8
ψ = 5

right.up asym = 0.556
left.low  asym = −0.722

β0 = 0.4, β1 = −0.7, β2 = 0.7
θ1 = 0.8, θ2 = 0.8
ψ = 5.5

right.up asym = 0.75
left.low  asym = 0.05

FIGURE 1. Some examples of growth curves according to equation (1). Dashed
red and green lines are the left and right asymptotes, respectively, and the blue
lines indicate the coordinates of the change point (not necessarily an inflection
point).

fit non-standard curves with very different growth rates before and after
the inflection point. Simulation results in Section 3 bear this out.

2 Modelling

The proposal can be considered as an extension of the segmented regression
presented in Muggeo (2003). Let Y be the response variable of interest and
X a continuous explanatory variable in [m,M ] where m = min(X) and
M = max(X). A growth curve with an inflection point ψ can be represented
by two branches, defined in [m,ψ) and [ψ,M ], respectively. Namely

E[Y |X] = β0 + β1
exp[θ1(ψ − x)+]

1 + exp[θ1(ψ − x)+]
+ β2

exp[θ2(x− ψ)+]

1 + exp[θ2(x− ψ)+]
(1)

where (ψ − x)+ = (ψ − x)I(ψ > x) and (x− ψ)+ = (x− ψ)I(x > ψ), with
I(·) being the indicator function. θ1 and θ2 are scale parameters regulating
the concavity or steepness of the two branches, while the β’s characterise
the asymptotes: the left one is given by β0 + β1 + β2/2, the right one by
β0 + β1/2 + β2. Some examples are portrayed in Figure 1.
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Model (1) has 6 parameters and the curve is continuous but not differen-
tiable at x = ψ. It is differentiable at the inflection point if the derivatives
of the two branches evaluated at ψ coincide, i.e. β1θ1 + β2θ2 = 0, which
reduces the number of parameters to 5. The curve is asymmetric around
ψ, but symmetry is ensured if θ1 = θ2 and β1 = −β2, making the number
of parameters equal to 4.
Parameter estimation can be based on the first-order Taylor expansion of
each branch around some specified starting values for (ψ, θ1, θ2), which re-
sults in a quite efficient algorithm consisting of fitting simple linear models
iteratively.

3 Simulation study

To evaluate the performance of our proposal, we contrast it with some fits
obtained via the drc R package (Ritz et al., 2015), which includes a large
number of parametric models traditionally used in the context of growth
curve analyses. We simulate data from four different models, with 3 sample
sizes (n = 25, 50, 100) and three levels of noise (low, medium and high).
Formally, for i = 1, . . . , n: µi = f(xi; ξ), yi = µi + εi, εi ∼ N(0, σ2), σ ∈
{0.05, 0.2, 0.5}, where xi is an equispaced sequence from 1 to 10 of length n.
The true f(·; ξ) functions are 1) four-parameter logistic model, 2) Gompertz
model, 3) arctan function and 4) Weibull model, and ξ is the vector of
parameters characterising each model; in all models, the inflection point is
fixed at ψ = 6. For each generating model, we simulate 500 replicates and
we fit six models: i) five-parameter logistic (L5); ii) four-parameter logistic
(L4); iii) Gompertz (G, 4 parameters); iv) Weibull (W, 4 parameters); v)
model (1) (S, 6 parameters); vi) model (1) with symmetry constraints (Ss,
4 parameters). We compare the performance of each model estimated on
the simulated data sets via the MISE (Mean Integrated Squared Error).
Figure 2 reports the ratios (on the log scale) between the MISE of each
adapted model and the MISE corresponding to the true model. When the
true generating model is arctan, since none of the estimated models is the
correct one, we use the median MISE as a baseline.
We note that the proposed approach exhibits values of MISE equal or,
surprisingly, even lower than those coming from the true fitted models in
33 cases out of 36. Only in three cases, for Gompertz, Arctan and Weibull
curves for n = 100 and σ low, our semi-parametric model returns MISEs
which are higher than those corresponding to the true fitted model.

4 Data analysis

We analyse the Heartrate data set in the drc package, which provides
measurements of mean arterial pressure and heart rate collected on n = 18
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FIGURE 2. Simulation results: Ratios of MISEs (on the log scale), comparing the
MISE of each fitted model to that corresponding to the true generating model.

subjects. Table 1 reports the estimated inflection points and the AIC val-
ues of our models and some competitors, including the Baroreflex model
(Ricketts and Head, 1999), commonly used in studies about arterial pres-
sure and recommended by the authors of drc for these data. It can be
noticed that our approach, in the six-parameter version, performs the best.
The symmetric curve is clearly not appropriate, as the data show an asym-
metric pattern. Moreover, it is worth noticing that the 5-parameter logistic
model, which was a good competitor of the segmented model in the simu-
lation study, performs poorly on the analysed data. The estimated value of
the asymmetry parameter is 16.72, reflecting the clear-cut asymmetric pat-
tern of the data and, as a consequence, the resulting estimated ψ̂ = 89.47
cannot be interpreted as an inflection point of the fitted curve. Figure 3
shows a graphical representation of the fitted models, where we draw in
colour our segmented models and Baroreflex, in black the other functions
considered, which behave quite similarly to each other.
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TABLE 1. Estimated ψ and AIC of different models fitted on Heartrate data.

Model ψ̂ AIC number of parameters

Baroreflex 75.59 128.14 5
L5 - 142.00 5
L4 75.42 144.40 4
Gompertz 76.80 138.19 4
Weibull 76.82 139.64 4
S 77.67 115.54 6
Ss 75.37 143.22 4

Notes: In the logistic model with five parameters (L5), when the symmetry
parameter is different from 1, i.e. the curve is asymmetric as in our case,
the estimated value of ψ cannot be interpreted as the inflection point.
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FIGURE 3. Fitted models for Heartrate data. The models with lowest AIC values,
Baroreflex and S, are represented in blue and magenta, respectively. The thinner
lines in black refer to the other fitted models, which have a very similar pattern.
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5 Conclusion

We have proposed a novel semi-parametric approach to fit sigmoidal curves,
which is very flexible in catching different growth shapes and it appears to
perform quite well in several scenarios. Several extensions can be considered
and will be discussed in the next version of the abstract. The methods
discussed in this paper will be implemented in the R package segmented.
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Abstract: Within the class of hidden Markov models (HMMs), which is a pop-
ular tool for modelling time series driven by underlying states, periodic variation
in the state-switching dynamics is routinely modelled using trigonometric func-
tions. This parametric modelling can be too inflexible to capture complex periodic
patterns, e.g. featuring multiple activity peaks per day. We explore an alterna-
tive approach using penalised splines to model periodic variation within HMMs.
The practicality and potential usefulness of our approach is demonstrated in a
real-data application modelling the movements of an African elephant.
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1 Introduction

Ecological time series data is often characterised by periodicities such as
diel variation, i.e. recurrent patterns over a 24-hour period. Adequately
modelling such periodic variation is crucial to comprehensively understand
behavioural dynamics. One popular tool for modelling ecological time series
and the periodicities therein is given by the class of hidden Markov models
(HMMs), which links the observed ecological data (e.g. step lengths and
turning angles in animal movement) to underlying non-observable states
(e.g. resting, foraging, travelling; cf. McClintock et al., 2020).
In principle, relatively basic HMMs can be used to infer an animal’s be-
havioural sequence (state decoding), based on which diel variation can be
investigated using simple visualisations (see e.g. Schwarz et al., 2021). From
the statistical perspective however, such a two-stage approach will often not
be ideal: the uncertainty in the state allocation is not propagated, statistical
inference on the periodic effects is not straightforward, and the dimension
of the state space may be overestimated. Alternatively, periodic variation

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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can be directly incorporated in HMMs using trigonometric modelling, for
instance relating the state transition probabilities to say the hour of the day
using sine and cosine basis functions (see e.g. Leos-Barajas 2017). While
this will often be sufficient, such a parametric approach may lack flexibility
to capture complex periodic variation.
Here we explore a more flexible, nonparametric estimation of periodicities
in the state-switching dynamics of an HMM using cyclic P-splines. For
inference, we devise an expectation-maximisation (EM) algorithm, thereby
isolating the estimation of the nonparametric periodic effect. This allows us
to exploit the powerful machinery available for nonparametric (regression)
modelling, specifically P-splines or other smoothing methods implemented
in existing software packages such as mgcv (Wood, 2017).

2 Methods

HMMs are used to model time series data x1, . . . , xT (e.g. step lengths
of an animal) driven by underlying states s1, . . . , sT (e.g. the behavioural
modes). In a basic HMM, the state process is assumed to be a Markov chain
with N states, characterised by the initial state distribution and the state

transition probabilities γ
(t)
ij = Pr(St+1 = j | St = i). The state active at

time t selects which of N possible state-dependent distributions f1, . . . , fN
generates the observation xt. Interest often lies in the drivers of the state
process, in which case the transition probabilities can be modelled as a
function — the inverse multinomial logit link — of a linear predictor:

γ
(t)
ij =

eτ
(t)
ij∑N

k=1 e
τ
(t)
ik

,

with τ
(t)
ii = 0 (reference category). When the aim is to model periodic pat-

terns in the state-switching dynamics, the linear predictor τ
(t)
ij is typically

constructed using trigonometric basis functions with the desired periodic-
ity. For example, for modelling diel variation in a time series with hourly
data, a possible general form of the linear predictor is

τ
(t)
ij = z′tβ

(ij) +

K∑
k=1

ω
(ij)
k sin

(
2πkt

24

)
+

K∑
k=1

ψ
(ij)
k cos

(
2πkt

24

)
. (1)

By increasing K, arbitrary (smooth) modelling of the periodic effect can
be achieved. However, when complex periodic patterns are to be modelled,
it can be more straightforward to avoid making any assumptions on the
functional shape of the periodic effect. To this end, we suggest replacing
the sum of trigonometric basis functions in (1) by a linear combination of
Q basis functions,

τ
(t)
ij = z′tβ

(ij) +

Q∑
q=1

a(ij)q Bq(t mod 24), (2)
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with the scaling coefficients a
(ij)
1 , . . . , a

(ij)
Q to be estimated. We use cubic

B-spline basis functions B1, ..., BQ, which are easy to compute and yield
visually smooth functions. To enforce the desired periodicity, these are
wrapped at the boundaries of the support. In practice, a large Q (e.g. 20)
is typically used to guarantee sufficient flexibility. Overfitting is avoided
by including a penalty on the sums of squared differences between the

coefficients a
(ij)
q associated with adjacent B-splines (an approach commonly

referred to as P-spline modelling, cf. Eilers and Marx, 1996).
This model formulation effectively corresponds to a nonparametric regres-
sion within HMMs. For example, in case of N = 2 states, the model features
one nonparametric logistic regression for each of the state-switching proba-

bilities γ
(t)
12 and γ

(t)
21 . For such nonparametric regression modelling, the infer-

ential machinery is well-established. Therefore, we apply the expectation-
maximisation algorithm (EM) to isolate the estimation of the logistic re-
gression component from the estimation of the other parameters of the
HMM, in particular those associated with the state-dependent process.
In the E-step of the EM algorithm, we replace all functions of the unob-
served states in the complete-data log-likelihood (CDLL) by their condi-
tional expectations, given the data and the current guess of the parameter
values. In the M-step, we optimise the resulting CDLL with respect to the
model parameters. The updated estimates of the initial state distribution
as well as the state-dependent distributions are routinely obtained. For up-
dating the parameters affecting the state transition probabilities, we exploit
that each row of the t.p.m. implies a categorical regression for the transition
to the next state, such that the associated parameters of these regressions
can conveniently be estimated separately, for example using mgcv.

3 Case study

We consider hourly GPS data collected for an African elephant from Oc-
tober 2008 to August 2010. From the positional data, we calculate the
Euclidean step lengths as well as the turning angles between consecutive
compass directions, based on which we aim to investigate diel patterns
in the elephant’s behaviour. We model the data using 2-state HMMs with
gamma and von Mises distributions for the step lengths and turning angles,
respectively. For modelling diel variation in the state-switching dynamics,
we consider the cyclic P-spline approach and, as a benchmark, the trigono-
metric approach (1) with K = 1, 2 and 3. All fitted models feature an
“encamped” state with relatively short step lengths and frequent reversals
in direction (state 1) and an “exploratory” state with longer steps and
higher persistence in direction (state 2).
Figure 1 displays the state-switching probabilities estimated under the non-
parametric as well as the parametric approach. All models detect a reduc-
tion in exploratory activity during the night. However, the flexible P-spline
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FIGURE 1. Estimated transition probabilities as a function of time of day, for the
different HMMs considered. For the P-spline model, the pointwise 95% confidence
intervals as provided by mgcv are shown.

approach additionally captures a bimodal diel variation, with more frequent
switching to the exploratory mode in the early morning and in the early
afternoon. In contrast, the commonly used trigonometric effect modelling
with K = 1 (i.e. one sine and one cosine basis function) is not sufficiently
flexible to identify this bimodality. When increasing the order to K = 2,
the bimodality can be identified, but only with K = 3 the parametric ap-
proach produces results similar to those obtained using splines. Modelling
periodic variation nonparametrically thus allows us to investigate tempo-
ral patterns without making any (a priori) restrictive assumptions and can
uncover relevant patterns that may otherwise go unnoticed.
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Abstract: This work is motivated by cardiophysiological disease diagnosis,
where the objective is to infer certain biophysical parameters of a cardiac me-
chanics model from a time series of quantities extracted from magnetic resonance
images (the volume of the left ventricle of the heart during different time points).
Due to the computational complexity of the cardiac model, we use a Gaussian
process as a statistical surrogate model for emulation. This requires us to build
the emulator in the Cartesian product space of time and biophysical parameters.
In this paper, we explore an approach based on a decomposition of the full co-
variance matrix as a Kronecker product of two separate covariance matrices in
biophysical parameter space and time. We first evaluate the accuracy and com-
putational efficiency of this approach on a simple toy problem before applying it
to a cardiac mechanics model of the passive filling process during diastole.

Keywords: Gaussian process; Time series kernel; Inverse estimate

1 Introduction

There have recently been impressive advancements in the mathematical
modelling of cardiophysiological processes (Mangion et al., 2017). How-
ever, getting these models into the clinic for improved decision support is
still challenging. The main difficulty is related to the fact that these mod-
els depend on various biophysical parameters, which differ from patient
to patient. These parameters cannot be measured directly and need to be
inferred based on a comparison between model predictions and data; the
latter is typically related to quantities of interest (QoIs) extracted from
magnetic resonance image (MRI) scans. A commonly used approach for in-
ferring these parameters involves iterative optimization. This entails defin-
ing a loss function that compares the model predictions and measured

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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quantities of interest, which are then optimized to obtain the set of pa-
rameter estimates. Since the mathematical models do not have closed-form
solutions, and repeated numerical simulations are computationally expen-
sive, new methods have to be developed to achieve patient-specific model
calibration in real-time. A promising approach is emulation (Davies, V. et
al., 2019), where we build a statistical surrogate model of the computation-
ally expensive original mathematical model. Previous work has explored
the option of emulating the QoIs extracted from an MRI scan at a fixed
time point (Lazarus et al., 2022). The motivation of the current study is to
extend this work by emulating a time series of QoIs. To this end, we will
explore the application of a Gaussian process (GP) (Roberts et al., 2013)
in the cartesian product space of time and biophysical parameters. We will
first evaluate the performance of the method on a simple toy problem before
applying it to the cardiac passive filling process during diastole.

2 Time-series Gaussian process

Consider X = [x1,x2....xn], where xi is the input variable for the ith case,
and the output space

Y = [f(x1)....f(xn)] (1)

with
f(xi) = [f(xi, t1), . . . , f(xi, te)] (2)

a time series of data as our QoI, where f has a joint Gaussian distribution
(Roberts et al. (2013)): Y ∼ N (µ,K), where µ is the mean of Y, and
K is the covariance matrix with i, j ∈ [1, ..., n]. For m unobserved cases
X∗ = [x∗

1, ....,x
∗
m], we also assume f(X∗) ∼ N (µ∗,σ2∗), then we have

µ∗ = K(X,X∗)TK(X,X)−1Y (3)

σ∗2 = K(X∗,X∗)−K(X,X∗)T K(X,X)−1 K(X,X∗), (4)

in which, σ∗2 is the covariance of f(X∗). Now we consider the time-series
GP, each case xi has k different parameters. Furthermore, we consider
the temporal space T is divided into e divisions, such that T = [t1, .., te].
Accordingly, for each time point ti, there are corresponding outputs Yti .
To describe the time-series outputs of Y, Roberts et al. (2013) intro-
duced a covariance matrix using the Kronecker product as cov(Y,Y) =
K1(X,X) ⊗ K2(T,T) where K1(X,X) and K2(T,T) can be calculated
from different kernel functions. The advantage of using the Kronecker prod-
uct is to separate the parameter axis and the time axis, allowing us to use
alternative kernels to compute the mean function and split the large-size
covariance matrix into the combination of two smaller matrices, which will
substantially reduce computational costs.
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3 Results

3.1 The toy model

We first introduce the toy model without added noise, that is

Y = A sin(2πB · t+ C) +D, (5)

in which the input space is X = [A,B,C,D] withA ∈ [1.0, 5.0],B ∈ [0.5, 2.0],
C ∈ [0.0, π], D ∈ [1.0, 5.0] and time t ∈ [0.0, 1.0]. For a space-filling design,
we use the Sobol sequence to generate 200 cases with 180 cases for training
and 20 for testing. The time-series GP for the toy model is

Y ∼ GP(0,K(X,X)) with K = K1(X,X)⊗K2(T,T),

where the kernel for parameters is the ARD Gaussian kernel, and the kernel
for time is from Matern family because of their flexibility in controlling
the smoothness to find the best description of the time axis. We further
compare different Matern kernels (5/2, 3/2) and the ARD Gaussian kernel
for the time axis using the 20 test cases. We found that the Matern 3/2
kernel gave the highest adjusted R2 score and the least mean squared error
(MSE) on the test set from table 1 below. Therefore the Matern 3/2 kernel
is used in the following analysis.

TABLE 1. The choice of k2 the kernel function when applied to the 20 test cases.

Kernel function R2 MSE

Matern 5/2 0.993 0.04
Matern 3/2 0.996 0.03
the ARD Gaussian kernel 0.962 1.10

After training the time-series GP, we now use it to infer unknown param-
eters of the toy model with noisy observed data Ỹ , which is synthetically
generated with σ2

m = 0.2 as

Ỹ = A sin(2πB · t+ C) +D + ϵ, where ϵ ∼ N (0, σ2
m). (6)

For each test case, we can predict the mean function µ(·) of Y with unknown
parameters θ = [Ã, B̃, C̃, D̃]. The prior of θ is the uniform distribution
(Ã ∼ U(1.0, 5.0), B̃ ∼ U(0.5, 2.0), C̃ ∼ U(0.0, π) and D̃ ∼ U(1.0, 5.0)).
The likelihood function can be defined as Ỹ ∼ N (µ(θ), σ2

m)

log(p(ỹ|µ(θ))) = −1

2
log(2πσ2

m)− 1

2σ2
m

e∑
i=1

(ỹi − µ(θ, ti))
2. (7)

By using Bayesian inference, we can sample θ from the posterior p(θ|µ, Ỹ )
by applying the Hamiltonian Monte Carlo Method (Casella and Robert,
2008).
One test case is selected to evaluate the effects of time points on parameter
inference, we then quantify how much more peaked the posterior distri-
bution becomes as we increase the sample size from 10 to 50, shown in
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(a) (b)

(c) (d)

FIGURE 1. Posterior distributions for A, B, C and D, respectively.

FIGURE 2. Residual of 20 test cases for e = 10 or e = 50 time points.

figure 1, where samples of [Ã, B̃, C̃, D̃] from the posterior with a kernel
density estimator are drawn, respectively.
For each test of parameter inference, we would get 10000 samples as results
and calculate residuals defined as the difference between samples and true
values. All residuals are then combined for the 20 test cases to quantify the
reduction in the posterior uncertainty as a consequence of increasing the
length of the time series by a factor of 5, shown in figure 2.

3.2 The cardiac model

We now consider a nonlinear biomechanical cardiac model in diastole, as
shown in figure 3(a). The myocardial material property is described by a
strain energy function, the so-called H-O model (Holzapfel, G. and Og-
den, R., 2009), which has 8 parameters (a, b, af, bf, as, bs, afs, bfs). In this
study, we only vary a and b while fixing (af, bf, as, bs, afs, bfs). The input
space consists of [a, b] and 10-time points to describe LV cavity volumes in
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(a) (b)

(c) (d)

FIGURE 3. The LV geometry (a); the predicted LV volume time series (b);
Posterior distributions of a (c) and b (d).

diastole for each case. To optimise kernel parameters of the time-series GP,
300 samples were generated using the Sobol sequence with 20 reserved for
testing. We finally inversely estimated a and b for one test case using the
trained time-series GP. Our preliminary results show that the time-series
GP can emulate the LV dynamics in diastole well (figures 3(b)), and can be
used for parameter inference without running computationally expensive
mathematical models, see the posterior distributions of a and b in figures
3(c) and (d).

4 Conclusions

We have constructed an emulator to accurately emulate time series data
generated from a toy model and a cardiac model. The toy model has four
parameters (frequency, amplitude, phase and offset) to describe a sine-like
curve that makes it challenging to emulate. Our experiments demonstrate
the time-series GP can well emulate the toy model. We quantify the reduc-
tion in posterior uncertainty as the time series length increases. Finally, we
demonstrate that the time-series GP can also accurately emulate the LV
cavity volume time series in diastole, and unknown material parameters
can be inferred using this emulator. Our next step is to infer material pa-
rameters of the human heart using this time-series GP with automatically
measured LV cavity volume data from in vivo MRI, which is based on the
work from papers (Lazarus, A. and et al.,2022) and (Arash, R. and et al.,
2023).



140 Time serial GP and inverse estimation

Acknowledgements

This work has been supported by EPSRC (grant reference numbers EP/T017899/1,
EP/S020950/1, EP/R511705/1) and the British Heart Foundation (PG/22/10930).
We would like to thank Dr Alan Lazarus for help with code.

References

Roberts, S. and Osborne, M. and Aigrain, S. (2013). Gaussian processes for
time-series modelling. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences. 371, 20110550

Lazarus, Al. and Dalton, D. and et al. (2022). Sensitivity analysis and in-
verse uncertainty quantification for the left ventricular passive me-
chanics. Biomechanics and Modeling in Mechanobiology. 21, 953 –
982.

Casella, G. and Robert, C. (2008). Monte Carlo statistical methods. Uni-
versity of Florida.

Mangion, K. and Gao, H. and et al. (2017). Advances in computational mod-
elling for personalised medicine after myocardial infarction. Heart.
104, 550 – 557.
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Abstract: Gradient boosting algorithms are attractive for effect selection in
multi-parameter generalized additive models. Due to the high-dimensionality of
the problem, a parsimonious covariance matrix model is required for modelling
multivariate Gaussian data. Here, we address covariance matrix model specifica-
tion using gradient boosting. In particular, the aim is ranking the effects used
to model the elements of the modified Cholesky decomposition of the precision
matrix. The performance of the proposal is illustrated on electricity demand data.
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1 Introduction

Additive covariance matrix models for multivariate Gaussian data account
for the potentially varying nature of the covariance matrix, Σ. However,
the number of distributional parameters increases quadratically with the
dimension of the outcome vector, which affects the scalability of model
fitting and poses a barrier to manual model selection. For multi-parameter
generalized additive models (GAMs), non-cyclical component-wise gradient
boosting is an effective tool for automatic effect selection (Thomas et al.,
2018). In this work, we select a covariance matrix model, based on the
modified Cholesky decomposition (MCD) parametrisation (Pourahmadi,
1999), by leveraging gradient boosting. We evaluate model performance on
multivariate electricity demand data.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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2 Parsimonious covariance matrix models

Let yi ∼ N (µi,Σi), i = 1, . . . , n, be independent d-dimensional response
vectors. Denote with η the n × q matrix of the linear predictors, where
q = d + d(d + 1)/2 is the number of distributional parameters involved
in both mean and covariance matrix modelling. The covariates xi enter
the model through the linear predictor vector ηi = (ηi1, . . . , ηiq), which
specifies the mean vector (µik = ηik for k = 1, . . . , d) and the unconstrained
elements of the MCD parametrisation, Σ−1

i = TT
iD

−2
i Ti. That is, ηik,

k = d + 1, . . . , q, control the non-trivial entries of logD2
i and Ti, where

Ti = DiC
−1
i , with Di the diagonal matrix containing the diagonal elements

of Ci, the lower-triangular Cholesky factor of Σi. The elements of ηi are

ηik =
∑
h

fhk(xhi ) , (1)

where the fhk(·)’s can be linear or smooth effects of covariate xj . Lin-
ear and the smooth effects, the latter being built using spline bases, are
parametrised by the regression coefficients vector β. Their complexity is
controlled via quadratic penalties scaled by smoothing parameter vector λ.
Vector λ is selected via an outer generalised Fellner-Schall iteration (Wood
and Fasiolo, 2017) while, for fixed λ, β is estimated by maximising the
log-posterior density via Newton’s algorithm. See also Wood (2017).
We use non-cyclical component-wise gradient boosting to select the effects
fhk(·) to include in the covariance matrix model, that is for k = d+1, . . . , q.
Briefly, having initialised the linear predictors, the gradient boosting algo-
rithm fits by least squares (but note that penalised least squares could
be used instead) the gradient of the log-likelihood with respect to the lin-
ear predictors involved in covariance matrix modelling, spanning a list of
candidate effects. The effect-linear predictor pair that leads to the largest
log-likelihood increase is used to update the model, where the step length
(learning rate) of the update is usually fixed to a sufficiently small value.
The algorithm is run for a certain number of iterations and the output of
the procedure is a list of effects, which are ordered by decreasing cumula-
tive log-likelihood gains. Then, the number of effects included in the final
model is selected by maximising the out-of-sample predictive performance.
Having selected the mean model manually and the covariance matrix model
as just described, we fit the corresponding multivariate Gaussian additive
model, using the Fellner-Schall iteration. See Gioia et al. (2022) for details
and Strömer et al. (2022) for related work.

3 Illustration

We consider data from the electricity load forecasting track of the GEF-
Com2014 challenge (Hong et al., 2016). The outcome vector elements are
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the hourly loads (loadj), from 12 p.m. (j = 1) to 21 p.m. (j = 10), cov-
ering the period 2005/01/02 to 2011/11/30. Hence, d = 10 and n = 2520.
The covariates include day of the year (doy), day of the week (dow), expo-
nentially smoothed temperature at the j-th hour (tempSj ), and the hourly

loads of the previous day (load24
j ).

To select the covariance matrix model, we first fit univariate Gaussian
GAMs, yik ∼ N (µik, σ

2
k), on 2005-2010. For the 2010 validation data we

adopt a 1-month block rolling origin forecasting procedure starting from
2010/01/01. The mean vector components are

µik = f101k (doyi)+f102k (tempSik)+f3k(dowi)+f4k(load24
ik ) , k = 1, . . . , d, (2)

where f1k and f2k are smooth effects, with the superscript denoting the
spline bases dimensions, while f3k and f4k are parametric linear effects.
Gradient boosting is run for 104 iterations over 2005 - 2009 data, with a
learning rate equal to 0.01, and spans the candidate effects of

ηik = f101k (doyi) + f52k(tempSilk) + f3k(dowi) , k = d+ 1, . . . , q, (3)

where f1k and f3k are as in (2), while q = 65 here. Denoting with lk the
column of logD2 or T where the k-th linear predictor acts, we exploit
the interpretation of the MCD parametrisation (see Pourahmadi, 1999) to
specify the candidate temperature effects, involved in f2k. E.g., the temper-
ature at 12 p.m. is a candidate for modelling logD2

11 and the first column
of T. Then, the cumulative log-likelihood gains of the effects selected for
modelling the entries of the MCD parametrisation are computed and the
effects are ordered in terms of decreasing importance.
Given the ordered list of effects obtained from the gradient boosting, we
fit the MCD-based multivariate Gaussian additive models on a grid of the
ordered list. Figure 1a shows the out-of-sample log-likelihood, which sug-
gests including 40 effects in the model. Figure 1b shows the position of such
effects on the MCD and summarises the results of the gradient boosting.
While the day of the week effects are discarded by the selection procedure,
the day of year effects are selected for modelling all the elements of logD2

and mainly the first three sub-diagonals of T. The temperature effects are
mostly selected to model logD2. Note that the entries of logD2 and T
are non-linearly related to one or more elements of the covariance matrix,
hence it is not possible to interpret the effects acting on the MCD entries
directly as variances and covariances.
The covariance matrix model obtained leveraging gradient boosting with
learning rate of 0.01, henceforth Parsimonious (lr = 0.01), is compared
with the Static covariance matrix model, with only intercepts in (3), and
the Full model, where each MCD element is modelled using all the effects in
(3). The resulting multivariate Gaussian additive models, with mean vector
specified by (2), are evaluated on 2011 data, using a 1-month rolling origin
forecasting procedure. The comparisons are in terms of the logarithmic
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FIGURE 1. Gradient boosting results with learning rate equal to 0.01. a) out-
-of-sample log-likelihood; b) effects acting on logD2 (diagonal) and T (off-diag-
onal). Colours are proportional to the cumulative log-likelihood gain.

(Log) and p-variogram score (Var − p, Scheuerer and Hamill, 2016), with
p = 0.5 and p = 1. Table 1 shows that the Parsimonious (lr = 0.01) model
is preferable to the Full one, and much superior to the Static model.

TABLE 1. Evaluation metrics. Underline indicates the best model.

Model lr Log Var - 0.5 Var - 1

Static 11213.95 86.54 5334.76
Parsimonious 0.01 11062.17 82.03 4982.96

0.10 11104.13 82.55 5042.40
Full 11064.26 82.16 5037.27

A sensitivity analysis is carried out for evaluating whether the model selec-
tion procedure is affected by the step length of the update. In particular,
we increase the learning rate to 0.1, which is the default choice in many ap-
plications. Figure 2a shows the out-of-sample log-likelihood, which suggests
including 15 effects in the covariance matrix model, i.e. much less than with
a learning rate of 0.01. Figure 2b shows that all the effects are selected for
modelling the logD2 entries. It appears that a larger learning rate leads to
more aggressive initial updates of the logD2, thus overfitting occurs before
the elements of T start to be modelled. The resulting MCD-based multi-
variate Gaussian additive model is then referred to as Parsimonious (lr =
0.1). While the evaluation metrics on 2011 data for Parsimonious (lr =
0.1), which are reported in Table 1, are slightly worse compared to both
Full and Parsimonious (lr = 0.01) models, such a model might represent
a sensible alternative when looking for a trade-off between parsimony and
predictive performance.
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FIGURE 2. Gradient boosting results with learning rate equal to 0.1. a) out-
-of-sample log-likelihood; b) effects acting on logD2 (diagonal) and T (off-diag-
onal). Colours are proportional to the cumulative log-likelihood gain.

4 Conclusions

The results so far show that gradient boosting is effective for ranking the
effects to be used within highly parametrised additive covariance matrix
models. The resulting automatic model selection approach is particularly
useful for this class of models, where a manual parsimonious model spec-
ification is challenging. However, the sensitivity of the model selection
procedure to the learning rate highlights the need for further studies on
how to tune this parameter. This is the focus of current research. The
SCM R package for fitting additive covariance matrix models is available
at https://github.com/VinGioia90/SCM.
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Brunet3, Jean-Francois Toussaint2, Juliana Antero2

1 Department of Mathematics and Statistics, University of Limerick, Ireland
2 Institut de Recherche BioMédicale et d’Épidémiologie du Sport, Paris, France
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Abstract: The relation between hormonal fluctuations along menstrual cycles
and physical performance is of particular interest in sport science research. With
the development of sensors technologies, the recording of large scale, high fre-
quency performance data sets is now available. For cycling, performance can be
measured using Mean Maximal Power curve. A functional linear mixed model
is proposed to assess whether performance differs between phases of the men-
strual cycle and how performance varies over the cycle based on the athletes,
training intensities and types of the bike. Our methodology captures the continu-
ous dynamic change characteristic of the data. The results indicate no difference
in average performance between the phases. The performance variability is also
similar for each phase. Most of the performance variability is induced by the
differences between the athletes.

Keywords: Cycling; Functional Data Analysis; Menstrual Cycle; Mixed-effects
Model; Performance Analysis

1 Introduction

Menstrual cycles affect women’s health and wellness. Female sex hormones,
and especially, estradiol and progesterone, fluctuate along the menstrual cy-
cle (see Figure 1). These hormones affect multiple parameters on women
ranging from adverse symptoms, such as fatigue, sleep disturbance or mood
disorders along menstrual cycle phases (Pierson et al., 2021), to many ben-
eficial cardiovascular, muscular and metabolic pa- rameters (Meignié et al.,

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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2021). Performance-based research in women sport science is still scarce in
regards to the influence of menstrual cycle phases (Meignié et al, 2021).
Cycling is interesting to analyze the influence of hormonal fluctuation onto
female performance. Mobile power meters are fitted to bicycles to mea-
sure the power delivered by cyclists during training. These data can be
used to monitor and evaluate training performance. Mean Maximal Power
(MMP) curves have been introduced to analyze power output profile at
the individual level (Pinot and Grappe, 2010). MMP curves are defined
as the maximal amount of power a cyclist can produce in a given period
of time. We analyse whether performance, in terms of MMP, is influenced
by the menstrual phases. We study performance variability with respect to
menstrual cycle phases, athletes, rating of perceived exertion (RPE) using
the Borg-CR10 scale (Borg, 1982) and types of the bike. We developed a
functional linear mixed model to answer these questions.

Menses Follicular Ovulation Luteal

Oestrogen

Progesterone

Days

FIGURE 1. Schematic representation of the phases’ division and hormonal fluc-
tuations for naturally cycling women.

Power output data are recorded at 1Hz by personal powermeter. An MMP
curve is derived from every individual training. Consider an exercise which
last T seconds and Z = {zt}1≤t≤T a sequence of observation of the power
output. Let t1, t2 ∈ [[1, T ]], such that t2 − t1 is constant, an MMP curve is

X(t) = max
t2−t1=t

zt1 + · · ·+ zt2
t2 − t1

, t = 1, . . . , T. (1)

The data collection lasted from February 2021 to November 2022. Eight
high-level female cyclists, with natural cycles, volunteered to participate in
the study. To investigate how the menstrual cycle affects the performance
of female cyclists, we estimated the different phase of the cycle for each
athlete. We asked the cyclists to inform us of the start and end of their pe-
riod, and we used a robust linear regression model (Soumpasis et al., 2020)
to estimate the day of ovulation for each cycle. Their menstrual cycles are
then divided into three phases: the menstruation phase, the follicular phase
(between the end of the bleeding period and the estimated ovulation day),
and the luteal phase (from the estimated ovulation day until the start of the
next period). Prior to participation, all the athletes were informed about
the purpose of the study. All investigations conformed to the code of ethics
of the World Medical Association and were approved by the Institutional
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Ethics Committee. Data collection was compliant with the General Data
Protection Regulation (2016/679) applied in the European Union.

2 Model

The model is a hierarchical model that takes into account that observations
depend on bike types, RPE and athletes and for each athlete we have re-
peated measurements for each of the three phases (menstrual, follicular and
luteal). We assume that the RPE factors and bike type factors are crossed
between athletes. This assumption is reasonnable since the factors are in-
dependent of the considered athlete. The factors are only partially crossed
because we did not observed all the combinations of training intensity and
bike type for all athletes. We consider the following model

Xjklmn(t) = µk(t) +Bjk(t) +Clk(t) +Dmk(t) +Ejklmn(t), t ∈ [[1, T ]], (2)

where j = 1, . . . , 8 (athletes), k = 1, . . . , 3 (phases), l = 0, . . . , 10 (RPE,
Borg-CR10 scale), m = 1, . . . , 4 (bike types), n = 1, . . . , Njklm (obser-
vations). Xjklmn(t) represents the MMP output of the observation n for
athlete j during phase k, training intensity l and bike type m for a period
of t seconds. µk(t) is the fixed effect for the phase of the menstrual cycle.
Bjk(t), Clk(t) and Dmk(t) are a phase-specific functional random intercept
for athletes, for RPE and for bike type respectively. Ejklmn(t) is a smooth
error term accounting for observation-specific variability. Bjk(t), Clk(t),
Dmk(t) and Ejklmn(t) are assumed to be centered and mutually uncorre-
lated. We allows the covariances of the functional random intercepts to be
different for each phase. This assumption is motivated by the intra-phase
variation (Figure 2) and by our aim to characterize this variability. The
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comparison of the fixed effects is performed using bootstrap estimation of
the statistics

SN =
NkNk′

NT
||µk − µk′ ||2 =

NkNk′

NT

∫
T

(µk(t)− µk′(t))2 dt, (3)

where N , Nk and Nk′ are the total number of observations, the number of
observation for phase k and k′ respectively. The sampled bootstrap statis-
tics, under the assumption of equality of the mean curves, are compared to
SN computed on the observed data. The estimation of the composents of
the model is performed following Cederbaum (2017).

3 Results

For the comparison of the fixed effects, we generated 5000 bootstrap sam-
ples such that there is no difference between phases from the observed data
to compare the mean MMP curves of the different phase. For each boot-
strap sample, we computed the test statistic (3) for each combination of
the cycle phases. Histograms of the resulted test statistics are plotted in
Figure 3 with SN computed on the observed data (plain line) and the 95%-
quantile of the distribution of the test statistics computed on the bootstrap
samples (dashed line). The test statistic computed on the observed data
is smaller than the 95%-quantile of the distribution of the test statistics
computed on the bootstrap samples for all phases comparison (Figure 3).
There is thus no evidence of a difference between the phases considering
their mean MMP curves. We fit the model (2) to all data with µk re-
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FIGURE 3. Histogram of the test statistic SN computed on 5000 bootstrap sam-
ples. Difference between menstruation and follicular phases (left), menstruation
and luteal phases (middle), follicular and luteal phases (right).

placed by a functional random intercept for the phases to obtain the full
variance decomposition (Table 1). The curves are standardized and we set
the percentage of variance explained to 99.999%. This decomposition high-
lights the importance of accounting for the different sources of variability
as most of the overall variability is induced by the different observations.
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TABLE 1. Full variance decomposition for a model with a functional random
intercept for phase with pre-specified variance explained of 99.999%.

Variability source Phase Athlete RPE
Variance explained (in %) 2.41× 10−3 22.0 11.5

Variability source Bike type Observation Error variance
Variance explained (in %) 16.6 49.8 6.60× 10−11

The second most important source of variability is induced by the athletes.
It appears that the different phases induce zero variation of power output.
Part of the variability in the MMP curves is due to the training intensity
(11.5%) and the bike type (16.6%). We have however not proven that there
is no variation between phases, we have failed to find evidence of variation
between phases. The athletes are thus likely to achieve their peak perfor-
mance in each phase. These results may be helpful for coaches who use
these curves for training planing or the comprehension of their athletes.

Acknowledgments: This study received funding from ANS and from IN-
SEP. The authors thank all the athletes who participated in this study and
the French Cycling Federation. S. Golovkine was partially supported by
SFI under Grant No. 19/FFP/7002 and co-funded under the ERDF.
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Abstract: In this work we propose a resampling technique for finite mixture
regression models to construct confidence intervals for the regression coefficients
in order to hold the type-I error threshold. The routine relies on bootstrapping
as intervals derived from standard regression theory tend to have insufficient
coverage rates.
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1 Overview

Mixture Regression Models (McLachlan and Peel, 2000) are widely used to
quantify associations between outcomes and various covariates in scenar-
ios with unobserved heterogeneity. However, uncertainty estimates are not
immediately available as regular statistical inference neglects any variance
regarding class assignments yielding biased results (Grün and Leisch, 2008).
This issue has been addressed for ordinary mixture models in Basford et
al. (1997) or O’Hagan et al. (2019) by employing resampling techniques
like various bootstrapping routines or the jackknife. In the case of mixture
regression models, Grün and Leisch (2004) already used bootstrapping to
detect identifiability issues of fitted mixture regression models. In this work,
we propose a resampling approach for uncertainty estimates of regression
parameters in finite mixture regression models. The method applies empir-
ical bootstrapping and in addition uses a matching mechanism based on
correlations of posterior class probabilities to aggregate estimates across all
bootstrapping iterations and prevent label switching.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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2 Resampling Method

Model Specification. For ψ = (π1, . . . , πK , θ
T
1 , . . . , θ

T
K) we consider the

finite mixture models

h(y|x, ψ) =

K∑
k=1

πkf(y|x, θk)

with K components and prior class probabilities πk ≥ 0. Maximum like-
lihood estimation, usually achieved using an expectation–maximization
(EM) algorithm, then yields estimates θ̂k and π̂k with posterior class prob-
abilities P̂ ∈ [0, 1]n×K where n denotes the number of total observations.
Resampling Algorithm. The following algorithm highlights the proposed
resampling routine.

Algorithm 1 Bootstrapped confidence intervals for finite mixture regres-
sion.

� Initialize a regular model fit to obtain estimates θ̂k, k = 1, . . . ,K,
and posteriors P̂. Choose number of bootstrap samples B.

� for b = 1 to B do

Draw a new empirical bootstrap sample (xb, yb) and compute esti-

mates θ̂bk, k = 1, . . . ,K, with posteriors P̂
b
.

Reorder estimates θ̂bk → θ̂bϱ(k) where ϱ(k) denotes the cluster of the
initial model fit with highest correlation of posterior probabilities.

end for

� Compute confidence intervals for each estimate θ̂k based on the
quantiles of (θ̂1k, . . . , θ̂

B
k ).

Computational Details. For the correlation matrix C = cor(P̂
∣∣
b
, P̂

b
) ∈

[−1, 1]K×K , the reordering permutation ϱ can be formally expressed as

ϱ : {1, . . . ,K} → {1, . . . ,K},
k 7→ arg max

l
(ckl)l=1,...,K ,

where P̂
∣∣
b

denotes the initial posterior probabilities P̂ with (possibly du-
plicated) entries corresponding to the bth bootstrap sample and ckl stands
for the entry in the kth row and lth column of C.
Furthermore, the starting values regarding class assignments in each boot-
strap iteration b are the configurations of the initial model fit evaluated for
the specific bootstrap sample (xb, yb).
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FIGURE 1. Depiction of the mixture data for average (σ = 0.3) and rather high
(σ = 0.05) separability.

3 Evaluation

We evaluate the approach by considering K = 2 univariate normal densities
f(y|βkx, σ2) with equal prior probabilities and coefficients β1 = 0 and
β2 = 1. Figure 1 depicts exemplary data for σ ∈ {0.05, 0.3}. Overall, we
independently simulated 1000 datasets and applied Algorithm 1 with B =
1000 accordingly. Coverage rates for the so obtained confidence intervals
with various confidence levels are displayed in Table 1.
While flexmix and Algorithm 1 reveal fairly desirable coverage rates in
a scenario with high separability, flexmix clearly falls behind the corre-
sponding thresholds for σ = 0.3. The confidence intervals obtained via

TABLE 1. Different coverage rates by flexmix and Algorithm 1 based on 1000
independent simulation runs.

σ = 0.3 σ = 0.05

1− α β1 = 0 β2 = 1 β1 = 0 β2 = 1

80% flexmix 0.691 0.693 0.760 0.795
Algorithm 1 0.795 0.796 0.769 0.792

90% flexmix 0.803 0.792 0.882 0.910
Algorithm 1 0.919 0.908 0.879 0.912

95% flexmix 0.866 0.863 0.935 0.953
Algorithm 1 0.969 0.955 0.934 0.953

99% flexmix 0.936 0.925 0.985 0.985
Algorithm 1 0.995 0.990 0.982 0.982
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FIGURE 2. Depiction of the coverage rates as highlighted in Table 1 for average
(σ = 0.3) and rather high (σ = 0.05) separability. Bootstrapped coverage rates
are plotted in red, rates obtained by flexmix in blue.

bootstrapping on the other hand stay arguably closer to the given thresh-
olds, which becomes even more clear in Figure 2. While the confidence
intervals derived from standard theory clearly lack behind in the σ = 0.3
case, the bootstrapped confidence intervals match the desired optimum
quite close.

4 Application

The Seizure data featured in the flexmix package consists of 140 daily
observations of a single patient with number of epileptic seizures as outcome
and a dummy for intravenous gamma-globulin as treatment covariate. A
Poisson mixture regression with K = 2 and the covariates treatment and

TABLE 2. Effect estimates with corresponding 95% confidence intervals for the
seizure data.

(95%-CI)

β̂ flexmix Algorithm 1

Component 1 treat −0.49 (−0.93;−0.05) (−1.37; 0.07)
day −0.03 (−0.04;−0.02) (−0.04;−0.01)

treat:day −0.01 (−0.02;−0.00) (−0.03; 0.01)

Component 2 treat −0.18 (−0.53; 0.16) (−0.67; 0.20)
day −0.03 (−0.05;−0.01) (−0.06;−0.00)

treat:day −0.02 (−0.01; 0.04) (−0.01; 0.05)
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day (of observation) yields the parameter estimates with corresponding 95%
confidence intervals depicted in Table 2. Similar to the simulation study,
the confidence intervals obtained via resampling are wider as the ones by
standard inference and occasionally even cross the border of significance
on the α = 0.05 level, which indicates possibly false positive findings.

5 Summary and Outlook

While resampling techniques have already been applied for mixture regres-
sion models regarding detection identifiability problems, they had yet to be
used regarding the estimation of confidence intervals. The proposed algo-
rithm in Section 2 relies on well established bootstrapping routines and is,
due to the tweaks with respect to relabeling and starting values, capable
of producing reliable confidence intervals which very accurately hold the
type-I error threshold as revealed by simulations and the Seizure appli-
cation. Further investigations could, among other aspects, focus on more
challenging and flexible model setups or an extension of the resampling
concept to other model classes like latent class analysis.

Acknowledgments: The work on this article was supported by the DFG
(Number 426493614) and the Volkswagen Foundation (Freigeist Fellow-
ship).
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demonstrated on a laboratory dataset for hemoglobin values and performs on par
with alternative strategies. In addition, an outlook on variable selection perfor-
mance is given using a small simulation study.
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1 Introduction

Applying statistical models to a dataset comprised of i = 1, . . . , n observa-
tions usually requires the assumption of a probability density function to
describe the (conditional) distribution of the variable of interest. However,
in the case of unobserved heterogeneity, e.g. if the data consists of two
or more unlabeled sub-populations, a single density function is not suffi-
cient. Then, given the number of latent components M , a weighted sum of
m = 1, . . . ,M probability density functions fm(x(i),θm) with parameter
vectors θm = (θ1, . . . , θKm

) of distribution-dependent size Km can be used
to construct a finite mixture distribution as

f(y(i)) =

M∑
m=1

αmfm(y(i),θm). (1)

With αm > 0 and
∑M
m=1 αm = 1, f(x(i)) is a convex combination of all

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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fm(y(i),θm) and a probability density function itself. The overall number

of distribution parameters across all components is then K =
∑M
m=1Km.

Mixture regression models (DeSarbo et al., 1988) extend the basic mixture
formula (Eq. 1) by allowing one or more of the distribution parameters to
be functions of the observed covariate vector x(i):

f
(
y(i)
∣∣x(i)

)
=

M∑
m=1

αm
(
x(i)

)
fm

(
y(i),θm

(
x(i)

))
(2)

Component-wise boosting algorithms (Bühlmann and Yu, 2003) provide
a versatile estimation approach suitable for a large variety of statistical
models in potentially high-dimensional data settings. In the following, we
provide a first working algorithm applied for the indirect estimation of
diagnostic reference distributions and compare it to results obtained from
expectation-maximization and mixture density networks (Bishop, 1994).
Moreover, a small simulation is conducted to investigate variable selection
performance via early stopping.

2 Methods

The core concept of boosting algorithms is to repeatedly fit simple “base-
learners” to the data with each iteration emphasizing areas of the response
that are still insufficiently predicted. In the component-wise approach, these
base-learners are usually regression-type functions (e.g. linear effects or
splines) fit to the negative gradient(s) of a specified loss-function. In each
iteration, the algorithm updates only the best performing base-learner, suc-
cessively expanding the model in the direction where the loss is reduced
most. For the general mixture regression model presented in Equation (2),
the loss is the negative loglikelihood

− lnL = − ln

(
n∏
i=1

M∑
m=1

α̂m
(
x(i)

)
fm

(
y(i), θ̂m

(
x(i)

)))

with hats indicating the parameters to be estimated from the data. This is
performed via j = 1, . . . , (K +M) additive predictors

gj(η
(i)
j ) = β0j +

∑
l∈B(j)

hlj
(
x
(i)
l

)
with B(j) comprising the indices of the covariates used for the base-learners
hlj() and a link function gj() that transforms the input to the domain of
the corresponding parameter.
In the following, we consider a Gaussian mixture regression setup with all

fm

(
y(i), θ̂m

(
x(i)

))
:= N

(
y(i), µ̂m

(
x(i)

)
, σ̂m

(
x(i)

)2 )
, where N () denotes
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the Gaussian density function with mean and variance depending on the
covariates. As a consequence, Km = 2 for all m, resulting in (2 + 1)M

parameters to be estimated via the additive predictors η̂
(i)
µm , η̂

(i)
σm and η̂

(i)
αm . In

the t-th iteration, the algorithm first computes the current mixture weights

α
(i)[t]
m from all η̂

(i)[t−1]
αm using the softmax function

α(i)[t]
m =

exp
(
η̂
(i)[t−1]
αm

)
∑M
l=1 exp

(
η̂
(i)[t−1]
αm

)
and the current posterior probabilities

π(i)[t]
m =

α
(i)[t]
m N

(
y(i), η̂

(i)[t−1]
µm , exp

(
η̂
(i)[t−1]
σm

)2 )
∑M
l=1 α

(i)[t]
m N

(
y(i), η̂

(i)[t−1]
µm , exp

(
η̂
(i)[t−1]
σm

)2 ) .
This allows the calculation of the gradients to be fitted by the base-learners
from

u(i)[t]αm
= α(i)[t]

m − π(i)[t]
m

u(i)[t]µm
= π(i)[t]

m

 η̂
(i)[t−1]
µm − y(i)

exp
(
η̂
(i)[t−1]
σm

)2


u(i)[t]σm
= −π(i)[t]

m


(
η̂
(i)[t−1]
µm − y(i)

)2
exp

(
η̂
(i)[t−1]
σm

)3 − 1

exp
(
η̂
(i)[t−1]
σm

)


Updating component-wise boosting algorithms with a single gradient is rel-
atively straightforward, but adaptive learning rates may be advantageous in
settings with multiple additive predictors (Zhang et al., 2022). While these
considerations most definitely play an important role for mixture distribu-
tional regression models, this first implementation is based on the original
strategy for boosted distributional regression models (Mayr et al., 2012).
As a consequence, each iteration of the algorithm updates all predictors
with the base-learner performing best for the corresponding gradient using
a fixed learning rate of 0.1. For this approach to work, different offsets are
required for the location parameters of the latent components, as the algo-
rithm would otherwise not be able to differentiate between them. Therefore,
we currently use different quantiles of the outcome variable based on the
number of components K (e.g. 33% and 66% for K = 2).

3 Hemoglobin data and variable selection

In order to asses the suitability of our algorithm, we demonstrate its ap-
plication to a laboratory dataset of the hemoglobin concentration in blood
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samples from girls. Figure 1 provides an illustration of the results together
with an comparison to solutions from earlier implementations based on
expectation-maximization and neural networks (Hepp et al., 2022).
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FIGURE 1. Top row: Age-dependent reference limits (i.e. 2.5% and 97.5% quan-
tiles) for the latent distribution of healthy hemoglobin concentration values of
girls estimated via three different methods. Bottom row: Corresponding esti-
mates of the mixture component weights.

The implemented models use M = 2 components to separate the unlabeled
healthy and pathological samples in order to determine a diagnostic refer-
ence distribution for the healthy component. Ultimately, all solutions cover
rather similar areas describing the age-dependent range of the healthy mea-
surements. Moreover, the implemented gradient boosting algorithm results
in very similar estimates for the non-linear dependency of the component
weights (i.e. the ratio of healthy samples) compared to the mixture density
network.
While this presents a promising outlook on the general suitability of boost-
ing algorithms in settings with unobserved heterogeneity, the advantage of
boosting over other methods is of course the ability to perform variable
selection simultaneous to parameter estimation. In the first steps to eval-
uate this feature, we conducted a simulation study with data generated
from a two-component Gaussian mixture with focus on the location pa-
rameters. For this purpose, each repetition samples l = 1, . . . , p covariates
xl from independent standard normal distributions and subsequently uses
two different models

ym ∼ N (β0m + Zβm, σm)

to generate the outcome variable, where the matrix Z comprises the first
five covariates Z = [x1, . . . ,x5], β1 = (−1, 2, 3, 0, 0) and β2 = (0, 0,−1, 2, 3).
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All additional covariates are pure noise variables and not correlated to ei-
ther latent component. Further, β01 = −1, β02 = 1 and the standard
deviations are defined as σ1 = 1.5 and σ2 = 3 and completely indepen-
dent from the covariates. In all runs, the total number of observations is
n = 250 with n1 = 150 and n2 = 100, resulting in fixed mixture weights
α1 = 0.6 and α2 = 0.4. For our proposed boosting algorithm, we used five-
fold cross-validation to find the best stopping iteration with respect to the
average predictive performance on the test folds. Then, we calculated the
mean squared error of the estimated regression coefficients with respect to
both βm to investigate if the solutions computed at the final iteration can
be distintively assigned to one of the true latent components, which was in
fact possible in all runs and settings. A summary of the results averaged
over all 100 simulation runs is provided in Table 1.

TABLE 1. Variable selection performance averaged over 100 simulation runs.
TPR: True positive rate, FPR(a): False positive rate for covariates correlated
to the other component, FPR(b): False positive rate, Size: Number of non-zero
coefficients

p m TPR FPR(a) FPR(b) FDR Size

10
1 1 0.745 0.756 0.615 8.27
2 0.957 0.45 0.306 0.383 5.3

100
1 0.973 0.145 0.054 0.557 8.32
2 0.803 0.22 0.034 0.544 6.04

Looking at the true positive rates, i.e. the proportion of informative vari-
ables selected, the proposed boosting algorithm reliably identifies the rele-
vant variables for each component, but better so for the first latent model
m = 1. This is not very surprising considering that this component is based
on the larger part of the sampled data (60%) and σ1 is only half the size
of σ2. However, this may be a disadvantage when it comes to the selection
of false positives, where we differentiate between the false positive rate of
the variables that are informative for the other component in FDR(a) and
those not related to both in FDR(b). Here, the relatively higher uncertainty
seems to prevent the inclusion of too many variables, as can be noted from
the smaller average model size. As a consequence, this also results in less
false positive selections in all but one comparison. While for the setting with
only p = 10 covariates the difference between the two FPR’s is not as ob-
vious, increasing p to 100 reveals a clear tendency of the current algorithm
to falsely select variables that are only relevant for the other component
compared to the completely non-informative variables, with the difference
more pronounced in the second component. Finally, differences in the false
discovery rate, i.e. the number of false positives in the set of selected vari-
ables, can be noted for p = 10, but the average rates are about equal for
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p = 100. This can most likely be traced back to the stronger decrease in the
TPR for the second component together with its minor increase in overall
number of selected variables.

4 Conclusion

In this short presentation of our proposed algorithm, we demonstrate that
component-wise gradient boosting algorithms are generally capaple of es-
timating the latent structure of mixture distributional regression models.
This provides a promising outlook to a more thorough analysis regarding
different initialization and updating strategies necessary to evaluate the
variable selection performance of boosting also with respect to the esti-
mation of dependency patterns between covariates, scale parameters and
mixture weights in potentially high-dimensional settings.
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Abstract: Motivated by a survey on the willingness to pay for luxury food prod-
ucts, which consists of various Likert-type items, we present a penalized version
of ordinal-on-ordinal regression in the framework of cumulative logit models. By
use of difference penalties on neighboring dummy coefficients, thus taking the
predictors’ ordinal structure into account, we provide a group lasso-type penalty
for smoothing and selection of ordinal predictors and a fused lasso penalty for
fusion and selection.
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1 Introduction

We consider a study concerning the segmentation of German consumers
based on the perceived dimensions of “luxury food” (Hartmann et al.,
2016). The aim of the study was to investigate the perceived dimensions
of luxury food and the shift of consumer consumption motives toward in-
dulgence, quality, and sustainability. The part of the dataset we examine
consists of 821 observations of 44 Likert-type items on eating and shop-
ping habits, diet styles, price, and luxury statements in general. One such
items is, for example, “I particularly associate high quality with luxury”,
with coding scheme −2 = ‘not true at all’, . . . , 2 = ‘absolutely true’. Our
response of interest is the willingness to pay for luxury food products, i.e.,
whether participants would be willing to pay a higher price for a food prod-
uct that they associate with luxury, measured again on the ordinal −2 to 2
scale. High-dimensional surveys like this, with ordinal data both on the left
and right-hand side of the regression equation, highlight the importance of

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).



164 Regularization for item-on-item regression

penalization in ordinal regression such as the cumulative logit model, be-
cause the full model is often hard to fit by ordinary/unpenalized maximum
likelihood, and not all of the items available will be relevant for the re-
sponse. We aim to investigate the ordinal covariates’ effect on the ordinal
response while integrating strategies for variable selection and smoothing
across covariate levels. At IWSM 2022, we presented a poster on a selection
approach for item-on-item regression (Hoshiyar and Gertheiss, 2022).
In short, the logistic group lasso estimator βλ for variable selection (Meier
et al., 2008; Yuan and Lin, 2006) was extended to the class of cumula-
tive logit models, with our estimator being the minimizer of the function
lλ(β) = l(β) + λ

∑p
j=1 Jj(βj), where l(β) is the log-likelihood of the un-

known parameters in the proportional odds model. In order to take into
account the ordinal structure of the covariates, as proposed by Tutz and
Gertheiss (2016), we modified the usual L2-norm by the first-order differ-
ence penalty

Jj(βj) =

√√√√{ kj∑
l=2

dfj(βjl − βj,l−1)2

}
, (1)

with βjl being the dummy coefficient of level l of covariate xj , kj the number
of corresponding levels, βj = (βj1, . . . , βjkj )⊤, and dfj = kj − 1 being
the respective degrees of freedom. For identifiability, we use the constraint∑
l βjl = 0∀j.

In some applications, however, we may be rather interested in collapsing
certain categories instead of (quadratic) smoothing (1). This type of clus-
tering can be done by a fused lasso penalty using the L1-norm on adjacent
categories. We hence extend the fused lasso (Tibshirani et al., 2005; Tutz
and Gertheiss, 2016)

Jj(βj) =

kj∑
l=2

|βjl − βj,l−1| (2)

to the framework of the cumulative logit model. Penalty (2) has the ef-
fect that neighboring categories may be fused; namely, they may have
exactly the same β-values as a result of penalized maximum likelihood
fitting. Moreover, the fused lasso also enforces variable selection, as a co-
variate is excluded if all its categories are combined into one cluster. The
proposed method will soon be made available in the R package ordPens,
which already offers fusion and selection for other (generalized) linear mod-
els (Gertheiss and Hoshiyar, 2021; Hoshiyar, 2021).

2 Numerical Experiment

We carried out a simulation study to investigate the properties of the pro-
posed ordinal-on-ordinal selection approach using penalties (1) and (2).
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We assumed to have p = 50 ordinally scaled covariates, with effects of
x1, . . . , x4 being non-monotone, effects of x5, . . . , x8 being monotone but
non-linear, and the effects of x9, . . . , x12 being linear across categories. The
remaining 38 covariates were irrelevant, i.e., with effects being zero. Factor
levels were randomly drawn from {1, . . . , 5}, meaning that each covariate
had the same number of levels. The (true) effects for some covariates are
shown in Figure 1(a). Using the 12 relevant predictors, we constructed the
ordinal response with 5 levels through a cumulative logit model. We con-
sidered three different sample sizes n = 200, 500, 1000. We then assigned
ranks to the predictor variables according to the order of non-zero ordinal
group lasso coefficients in the coefficient path, and call this ordinal rank
selection (ORS). We proceeded in a similar manner with the fused lasso
estimates, and call this ordinal rank fusion (ORF). For comparison, we also
fit a proportional odds model using polr() from R package MASS (Venables
and Ripley, 2002; R Core Team, 2021) with forward stepwise selection. To
evaluate the methods’ performance, we constructed the Receiver Operat-
ing Characteristic (ROC) by varying selection thresholds and calculated
the Area Under the Curve (AUC) in each of 100 iterations of our simu-
lation, which is illustrated in Figure 1(b)–(d) for sample size n = 500. It
is seen that results for ORF are very similar to those of ORS. polr es-
timation failed in 37 of the datasets (zero cases with n = 1000, but all
cases with n = 200). Taking only the 63 successful runs into account, mean
and median AUC were 0.908 and 0.919, respectively. In summary, the or-
dinal penalties proposed here (ORS and ORF) worked very well and both
accounted for the ordinal-on-ordinal structure. Further simulation studies
showed that polr only worked well when the sample size was large enough
and failed otherwise. Ordinal selection and ordinal fusion worked equally
well and outperformed polr by far in most scenarios considered (details
not shown here).

3 Case Study: Spending on Luxury Food

Figure 2 illustrates the estimated coefficients of selected covariates and
different values of tuning parameter λ when applying the ordinal lasso
to the luxury food data (top: cumulative fused lasso; bottom: cumulative
group lasso). For smaller λ (light gray), the estimates are more wiggly and
become more and more smoothed out/shrunk as λ increases. Willingness
to pay tends to increase among people who eat out frequently in expensive
restaurants (a), prefer vegetarian food (b), and associate high quality with
luxury (c). If using the fused lasso and choosing the amount of penalty
by (5-fold) cross-validation, we obtain an optimal λ around 18.5/n. For
the variable “Vegetarian”, for example, it is seen that most categories are
fused. If using the ordinal group lasso instead, the optimal/cross-validated
λ is around 14.5/n.
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FIGURE 1. (a) True effects, exemplarily for influential predictors x1, x5, x9. (b)
ROC curves when using ORS with n = 500; (c) ROC curves when using polr

and stepwise selection; (d) ROC curves when using ORF; results based on 100
simulated data sets.
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Abstract: We develop semiparametric inference for the covariate-specific re-
ceiver operating characteristic (ROC) surface, a popular tool for evaluating the
accuracy of diagnostic tests measured on a continuous scale when there exist
three ordered disease groups. In our application we seek to assess if and how
the accuracy of a potential biomarker of Alzheimer’s disease (AD) to distinguish
between individuals with normal cognition, mild cognitive impairment, and de-
mentia, changes with age and gender.

Keywords: Location-scale regression model; Optimal thresholds; Penalised-splines,
Receiver operating characteristic surface; Volume under the surface.

1 Introduction

Before a test is routinely used in practice, its ability to distinguish between
different disease stages must be rigorously evaluated. As a direct gener-
alisation of ROC curves, ROC surfaces have been developed to evaluate
the accuracy in ordered three-class diagnostic problems. It is well recog-
nised that the performance of a test may be impacted by covariates (e.g.,
age and gender) and that ignoring covariate information may lead to in-
correct conclusions about a test’s discriminatory ability. Although there is
now a quite extensive literature of methods for accommodating covariates
in ROC curves, approaches for ROC surface regression are scarse. In this
work, we develop a flexible approach to estimate the covariate-specific ROC
surface that relies on modelling the relationship between test outcomes and
covariates, in each of the three groups, through a location-scale regression
model where the mean and variance functions are estimated with penalised-
splines. In addition, estimation of the distribution function of the regression

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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errors, needed to compute the induced covariate-specific ROC surface, is
done via a smoothed version of the distribution function of the standard-
ised residuals. As a result, estimates of the covariate-specific ROC surface
are smooth without the need to specify a parametric distribution. This is
appealing as in practice we do not expect the accuracy of the test to change
abruptly for close threshold values.

2 Induced nonparametric inference for the
covariate-specific ROC surface and its functionals

2.1 Background

Let Y1, Y2, and Y3 be continuous random variables denoting the outcomes
of the test in each of the three groups (e.g., in our AD application, index
1 stands for normal cognition, index 2 for mild cognitive impairment, and
index 3 for dementia) and let X1, X2, and X3 be covariate vectors (the
same in the three groups). For a given covariate value x, the covariate-
specific true classification fraction (TCF), for a given pair of threshold
values (c1, c2), c1 < c2, for each of the three groups, can be written as

TCF1(c1, c2 | x) = Pr(Y1 < c1 | X1 = x) = F1(c1 | X1 = x),

TCF2(c1, c2 | x) = Pr(c1 ≤ Y2 < c2 | X2 = x) = F2(c2 | X2 = x)−
F2(c1 | X2 = x),

TCF3(c1, c2 | x) = Pr(Y3 ≥ c2 | X3 = x) = 1− F3(c2 | X3 = x),

where Fd(y | x) = Pr(Yd < y | Xd = x), for d ∈ {1, 2, 3}. In this set-
ting, for each possible x, the covariate-specific ROC surface measures the
amount of separation of the conditional distribution of test outcomes in the
three groups. In particular, the covariate-specific ROC surface is the plot
in the unit cube depicting the covariate-specific TCFs in each group as the
thresholds c1 and c2 vary. By specifying the TCF in group 1, say p1, it is
possible to define the covariate-specific threshold values cp11,x which give rise
to a TCF of p1 in each of the subpopulations defined by the covariates, i.e.,
cp11,x = F−1

1 (p1 | x). In the same vein, if we let the TCF in group 3 to be p3,

then cp32,x = F−1
3 (1− p3 | x) is the covariate-specific threshold that leads to

a TCF of p3 in each of the subpopulations defined by the covariates. The
covariate-specific ROC surface is therefore defined as

ROCS(p1, p3 | x) = Pr(cp11,x ≤ Y2 < cp32,x | X2 = x)

= F2

{
F−1
3 (1− p3 | x) | x

}
− F2

{
F−1
1 (p1 | x) | x

}
,

if F−1
1 (p1 | x) < F−1

3 (1− p3 | x).
A popular index of the overall diagnostic accuracy is the volume under the
(ROC) surface (VUS). The covariate-specific VUS is given by VUS(x) =
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0

∫ 1

0
ROCS(p1, p3 | x)dp1dp3. Conditional on x, when the distributions of

test outcomes in the three populations completely overlap, and thus the
test has no discriminatory ability, the VUS takes the value 1/6, while a
VUS of 1 corresponds to the case of no overlap between any of the three
distributions, i.e., the test discriminates perfectly between the three groups.
In practice, once the accuracy of the test to distinguish simultaneously
between the three classes has been evaluated, the next step is to find the
pair of thresholds that should be used in practice to diagnose individuals.
A possible criterion to find such a pair of thresholds is to minimise the
euclidean distance of the surface to the corner that corresponds to perfect
accuracy (where all three TCFs equal one)

(c∗1(x), c∗2(x)) = arg minc1,c2:c1<c2
√

(TCF1(c1, c2 | x)− 1)2 + (TCF2(c1, c2 | x)− 1)2 + (TCF3(c1, c2 | x)− 1)2.

2.2 Estimation

We assume that the relationship between covariates and test outcomes in
each population is given by a location-scale regression model, i.e.,

Y1 = µ1(x) + σ1(x)ε1, Y2 = µ2(x) + σ2(x)ε2, Y3 = µ3(x) + σ3(x)ε3,

where µd(x) and σ2
d(x) are the conditional mean and variance functions,

for d ∈ {1, 2, 3}. The errors ε1, ε2, and ε3 are independent of each other and
independent of the covariates and are further assumed to have mean zero
and unit variance. The corresponding cumulative distribution functions are
denoted by Fε1 , Fε2 , and Fε3 . The induced form of the covariate-specific
ROC surface can therefore be expressed as

ROCS(p1, p3 | x) = Fε2

{
µ3(x)− µ2(x)

σ2(x)
+
σ3(x)

σ2(x)
F−1
ε3 (1− p3)

}
−

Fε2

{
µ1(x)− µ2(x)

σ2(x)
+
σ1(x)

σ2(x)
F−1
ε1 (p1)

}
, (1)

for p1 and p3 such that ROCS(p1, p3 | x) ≥ 0 and 0 otherwise. The expres-
sion for the pair (c∗1(x), c∗2(x)) is also rewritten is a similar fashion.
As Equation (1) makes clear, estimating the covariate-specific ROC surface
and associated VUS and optimal pair of thresholds, under the assumption
of a location-scale regression model in each group, is a matter of estimating
the mean and variance functions as well as the distribution function of the
regression errors. We propose to estimate, in each group, the mean and
variance functions, in a sequential manner, using penalised splines (Eilers
and Marx, 1996) and to estimate Fεd by a smoothed version of the empirical
distribution function of the standardised residuals (Pya and Wood, 2015).
With regard to inference, a bootstrap of the residuals, in each group, is
employed.
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3 Application

We apply our methods to data derived from the Alzheimer’s Disease Neu-
roimaging Initiative. Here we study how the hypometabolic convergence
index (HCI) simultaneously distinguishes between individuals with nor-
mal cognition, with mild cognitive impairment, and with AD and how this
discriminatory ability may change with age and gender. Of the 1032 in-
dividuals in our study, 138 have been diagnosed with AD, 581 have mild
cognitive impairment, and 313 are cognitively normal. In Figure 1 we can
see that the discriminatory ability of the HCI to distinguish between the
three groups across all ages is quite good and that it is slightly better for
ages between 70 and 80 years old (by opposition to ages between 65 ad
70 and between 80 and 85). Gender does not seem to greatly affect the
discriminatory ability of the HCI. Further, while for c1 there does not seem
to exist a marked variation with age, c2 does vary with age, although the
bootsrap confidence bands are wider.
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FIGURE 1. VUS , c∗1 , and c
∗
2 . Solid lines are the point estimates and shaded bands are the

95% pointwise bootstrap confidence bands (based on 500 resamples).
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Abstract: There is a great interest to spatially analyse data from primary
care registries, as they can provide timely information about the spatial risk
of diseases. Disease mapping methods aim to interpret geographical variation
in disease risk in order to identify regions at higher risk for a certain disease.
However, it is unclear to which extent characteristics of primary care registry
data, such as a spatially disproportionate data sample or variation in reporting
efforts, may affect spatial inference. This paper investigates these issues using
a spatially discrete geostatistical model on a case from the Flemish (Belgium)
Intego primary care registry. By means of a simulation study, we describe several
important considerations concerning the registry design as well as the use of
spatial models on such data.

Keywords: Spatial analysis; primary care registry; R-INLA.

1 Introduction

Primary care registries hold individual patient information that is rou-
tinely collected during daily general practice (e.g., disease diagnoses, de-
mographic information, medications, etc.). Spatial analyses of such data,
e.g., by means of disease mapping methods (Lawson et al. (2000)), can pro-
vide timely information about the geographical variation in disease risks.
However, it is unclear to which extent often encountered characteristics of

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
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primary care registry data, such as spatially disproportionate data collec-
tion or variation in reporting efforts, may invalidate inference about the
spatial mechanisms. We evaluate these issues in the context of the Intego
registry (Truyers et al. (2014)) by means of a Bayesian spatial analysis of
a health outcome and a subsequent simulation study, after which we give
recommendations to set up similar studies.

2 Data

We investigated the spatial distribution of lower respiratory tract infections
(LRTIs) in Flanders, i.e., the Dutch-speaking northern region of Belgium,
in the year 2019 using data from the Intego registry. The study population
consisted of 260.017 individuals who visited, at least once in 2019, one of
the 105 general practices that were part of the Intego network in 2019. The
outcome of interest concerns an LRTI diagnosis which was defined as the
diagnosis of either acute bronchitis or pneumonia. The Intego database pro-
vided information about an individual’s age, sex, increased reimbursement
for healthcare status, municipality of residence, and visited practice. These
data represent a case of unbalanced sampling as there were strong regional
differences in the sample’s representation of the population at risk. For the
simulation, we constructed an additional data set that mimics a balanced
sampling scheme, i.e., where all municipalities provide an equal number of
participating practices and where all inhabitants of a municipality visit one
of the practices in that municipality.

3 Model

We modelled the binary LRTI state of a patient, Yi, with i = 1, ..., N , living
in municipality xi, and visiting practice zi, via a generalized linear mixed
model,

Yi ∼ Bernoulli(πi), (1)

logit(πi) = µi + U(xi) + V (zi), (2)

with µi containing the intercept and covariate effects,

µi = β0 + β1 ∗ sexi+

+ β2 ∗ agegroup1i + β3 ∗ agegroup2i+

+ β4 ∗ agegroup4i + β5 ∗ agegroup5i + β6 ∗ agegroup6i+

+ β7 ∗ reimbi,

(3)

where agegroup3 was used as the reference age group. We apply a random-
effects parametrization similar to the BYM convolution (Besag, York, and
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Mollié (1991)), where U(x) is a spatially structured conditional autoregres-
sive (CAR) random effect at the level of the residential location (Besag
(1974)),

U(x)|U(x−) ∼ N (ūδx ,
σ2
u

nδx
), (4)

with ūδx =
∑

l∈δx
U(l)

nδx
, where x− represents the set of all municipalities

except location x; δx and nδx represent, respectively, the set and the number
of neighbours of municipality x, using a first-order neighborhood structure.
V(z) is a spatially unstructured Gaussian random effect at the practice
level,

V (z) ∼ N (0, σ2
v). (5)

Integrated Nested Laplace Approximation (INLA) was used for model es-
timation in R (R-INLA, Rue (2009)).

4 Simulation configuration

As a sensitivity analysis of the model, applied to the case from Intego, in-
dicated that the estimation of the spatial process (U(x)) was sensitive to
the set of practices providing the data, a simulation study was performed.
The simulations considered two general scenarios, one with an unbalanced
sampling scheme and one with a balanced sampling scheme. Table 1 shows
the values and explanation of the three parameters that were adjusted in
different simulation settings. In total, there were 36 parameter combina-
tions (scenarios), 9 for the unbalanced (without c) and 27 for the balanced
sampling scheme. Per scenario, we simulated values for the random effects
and together with the covariate estimates obtained from the case, the prob-
ability πi was computed and the number of LRTI cases were simulated from
a binomial distribution. This process was repeated 150 times per scenario.
The resulting data sets were analysed with the same model. The estimation
of the mechanism of interest, i.e., the spatial effect was assessed.

TABLE 1. Simulation parameters. Parameter c only applied to the balanced
sampling scheme scenario.

parameter interpretation values

σu variation in the random spatial effect 0.1, 0.3, 0.6
σv variation in the random practice effect 0.1, 0.3, 0.6
c number of practices per municipality 1, 2, 3
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5 Results

Figure 1 shows the boxplots of the mean absolute errors (MAEs) between
the estimated and simulated spatial pattern after standardizing them to
a process with standard deviation σu = 0.1. The MAE for one simulation

run (for one scenario) s was computed as MAEs =
∑m

j=1 |Û(xj)s−U(xj)s|
m

with m = 300, i.e., the number of municipalities in Flanders. The MAEs
of the spatial pattern are closer to zero for higher σu, lower σv and higher
number of practices c. Interestingly, lowering the practice variability leads
to a substantially better estimation of the spatial trend in the balanced
sampling scheme scenario.

FIGURE 1. Mean absolute errors of the spatial patterns in different scenarios
after standardizing.
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Abstract: High-dimensional problems occur in a huge variety of applications,
increasing the need of suitable models that are interpretable. Especially in the
presence of (dummy-coded) categorical covariates, the dimension of the param-
eter vector to be estimated grows rapidly. Assuming that the true underlying
structure is sparse, variable selection procedures eliminate the non-influential co-
variates from a regression-type model. We target at further reducing the dimen-
sion through categorical covariates levels fusion. That is, if a subset of levels of a
categorical covariate have the same influence on the response, they will be fused.
After introducing L0-fused group lasso (L0-FGL) for logistic regression, perform-
ing variable selection and levels fusion simultaneously, we ensure the quality of
our new approach by investigating its theoretical properties. Developing and im-
plementing two computational approaches for L0-FGL, we further point out the
performance of the resulting estimates in simulation studies. To obtain post se-
lection inference for L0-FGL, we obtain a (multiple) sample splitting approach
including a likelihood ratio test framework. For the resulting two-stage L0-FGL,
we investigate theoretical properties and examine the asymptotic behavior.

Keywords: High-Dimensional Statistics, Group Lasso, L0 Norm, Likelihood Ra-
tio Test, Sample Splitting

1 The L0-Fused Group Lasso for Logistic Regression

Under a logistic regression setting, we assume the response variable Y to
be binary. Further, we assume to have J ∈ N categorical covariates Xj ,
j ∈ {1, ..., J}, each having pj + 1 levels, coded by 0, ..., pj . In particular,

zero is chosen to be the reference category. With p :=
∑J
j=1 pj , the result-

ing parameter vector is β = (β0,β1, ...,βJ)T ∈ Rp+1, where β0 denotes the
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intercept. The subvector βj = (βj1, . . . , βjpj ), j ∈ {1, ..., J} is the parame-
ter subvector corresponding to the j-th factor Xj . For a sample size n ∈ N,
we assume a fixed n × (p + 1) design matrix X = (1,XT

1 , ...,X
T
J ). Per-

forming regularized or penalized regression, our goal is to minimize the sum
of the log-likelihood function (denoted by Ln(β)) and a penalty function
(denoted by Pλ(β)), hence

Mpen(β) = −Ln(β) + Pλ(β)

is minimized, where we call Mpen(β) the objective function. Consequently,
the resulting penalized estimator is given by

β̂ := argmin
β∈Rp+1

Mpen(β). (1)

The well known group lasso (see Kim et al., 2006; Meier et al., 2008) is
designed for factor selection, meaning that a factor is either completely
excluded from the model, or it is entirely included in the model. Besides
factor selection, performing levels fusion will further reduce the dimension
of the problem. To do so, penalty functions are applied on the differences of
the covariates levels within a factor, considering all pairwise differences or
only those of adjacent levels, depending on whether the factor is nominal or
ordinal, respectively. Applying the L1 penalty on the differences of the lev-
els, such fusions were considered by Bondell and Reich (2009) for ANOVA
and by Gertheiss and Tutz (2010) for linear regression. To overcome the
known issue of biased estimates using L1, the L0 norm || · ||0 applied on the
differences was considered by Oelker et. al (2014), where for some γ ∈ Rp+1

the L0 norm is defined as ||γ||0 := |{j | γj ̸= 0}|, counting the number of
nonzero entries in γ.
For the purpose of simultaneously performing factor selection and levels
fusion, we introduce the L0-FGL penalty function

Pλ(β) := λ1

J∑
j=1

||βj ||Kj
+ λ0

J∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0 ||βj,r − βj,s||0,

where Kj ∈ Rpj×pj is some positive definite and symmetric matrix (see
Kaufmann and Kateri, 2022). The first summand of the penalty function
above

P 1
λ(β) := λ1

J∑
j=1

||βj ||Kj

is the Group Lasso penalty, while the second one

P 0
λ(β) := λ0

J∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0 ||βj,r − βj,s||0
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is the CAS-L0 penalty function. By appropriately choosing Kj in P 1
λ(β),

for example Kj := w̃
(j)
1 1pj×pj , we can also obtain weights w

(j)
1 =

√
w̃

(j)
1

in the Group Lasso part. Throughout our work we will adopt (in the non-
adaptive version) the convenient choice Kj := pj1pj×pj which gives weights
that account for factors having different numbers of levels. Using adaptive
weights, we further introduce the adaptive L0-FGL penalty function.

1.1 Existence and Theoretical Properties of the L0-FGL
Estimator

We show the existence of a minimum of the L0-FGL objective function
Mpen(β), as well as that this choice of penalty performs levels fusion. We
can also ensure this existence in a high dimensional setting with p > n.
Having proven the existence of the L0-FGL estimator (1), we prove its

√
n

consistency for the case of fixed p < n and for diverging pn, under respective
regularity conditions. Further, under a true underlying sparse structure, we
derive the asymptotic normality property for the L0-FGL estimator (1).
Two results (one for the fixed p case and one for the diverging pn case) on
selection consistency complete the investigation of theoretical properties.
More details can be found in Kaufmann and Kateri (2022).

1.2 Computational Methods and Simulation Studies

To obtain L0-FGL estimates, we regard two different approaches: the PIRLS
algorithm (see Oelker and Tutz, 2013) and a block coordinate descent
(BCD) procedure (see Meier et al., 2008). Since the L0 part in L0-FGL is
not continuous, hence not differentiable, we use a quadratic approximation
making it feasible for optimization. In PIRLS, also the Group Lasso part is
quadratically approximated while in the BCD procedure it is not directly
approximated since we use a quasi Newton step. Applying both computa-
tional methods, we investigate the performance of L0-FGL in simulation
studies. For the chosen high-dimensional design, our BCD approach seems
to be beneficial, highly reducing the complexity of the problem. In a non
high dimensional design we observe that L0-FGL computed with PIRLS
results in the most sparse model improving the selection performance of
the known L0 approach (see Kaufmann and Kateri, 2022).

2 Statistical Inference for L0-Fused Group Lasso

It is well known that inference in high dimensions is challenging. Using
penalized regression with L0-FGL, we are able to reduce the dimensionality
of the parameter space that we observe. But, the high dimensionality makes
it in general impossible to directly apply likelihood ratio tests because of the
missing consistency of the maximum likelihood estimator (see Ning and Liu,
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2017). Consequently, it is not straightforward to obtain inferential results
for L0-FGL. We propose a two-stage procedure, based on a (single and
multiple) sample splitting approach which allows us to perform statistical
inference (see Wassermann and Roeder, 2009; Meinshausen et al, 2008).

2.1 Two-Stage L0-FGL

The general idea is to first split the sample in two independent sets D1 and
D2. Then, perform L0-FGL to reduce the dimensionality on set D1 and,
proceeding with the reduced parameter space, perform maximum likelihood
estimation on the other set D2. Since with this procedure we reduced the
dimension of the parameter set, we shifted the problem from a high dimen-
sional to a non high dimensional one, making thus possible the application
of likelihood ratio test theory. Of course, we have to impose some adequate
assumptions to ensure that the dimension reduction is ‘enough‘. But, with
the previous theoretical investigation of L0-FGL, these assumptions are
reasonable. The idea of sample splitting has its roots in Wassermann and
Roeder (2009), while it was adjusted for the multiple split in Meinshausen
et al. (2008). In both approaches, a linear regression setting is assumed and
approaches performing variable selection. We extend this to logistic regres-
sion and using a regularization approach which performs variable selection
as well as levels fusion. Further, since we adjust the mentioned approaches
for categorical variables, we need to test sub-vectors in the likelihood ra-
tio test instead of single (scalar) components, which is the case in the
related literature. We use two approaches adjusting for multiplicity of test-
ing (Bonferroni and Benjamini-Hochberg). We first show that in the single
split case the type-I-error can be bounded asymptotically, using Bonferroni
correction. Further results are investigated, also using Benjamini-Hochberg
adjustment (see Benjamini and Hochberg, 1995) and considering the exten-
sion to the multiple split. We underline the importance of the theoretical
properties for L0-FGL that we have shown (see Section 1.1) since they will
be essential for the proofs for statistical inference.
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Abstract: Polygenic risk scores (PRS) predict the individual genetic liability of
a person to a certain trait and are expected to play an increasingly important
role in future clinical risk stratification. Typically, PRS are constructed based
on summing up univariate effect estimates derived from genome-wide association
studies for risk alleles that are present for the individual. To overcome relying on
univariate effect estimates and to directly enable multivariable statistical mod-
elling for large and high-dimensional genotype data, we introduced a statistical
boosting framework incorporating various loss functions to model a wide range
of phenotypes. We discuss how snpboost can be used to construct prediction
intervals via quantile regression and how sparse PRS models can be derived for
the prediction of time-to-event data.

Keywords: statistical boosting; high-dimensional data; variable selection; poly-
genic risk scores; prediction.

1 Introduction

Polygenic risk scores (PRS) aim to capture an individual’s genetic predis-
position to a certain clinical outcome. They are often based on large-scale
genotype data with both large n (hundred thousands of participants) and
large p (millions of SNPs), comprising common genetic variants with low
to medium effect sizes. As an additional hurdle, genetic variants which are
close to each other often show high correlations (linkage disequilibrium,
LD). To deal with the high-dimensionality of the data, the most common
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methods to derive PRS such as LDpred, PRScs and PRSice use summary
statistics of simple univariate association tests which had been assessed
for each variant in genome-wide association studies (GWAS). Additional
methods such as Bayesian approaches are then applied to account for LD
and to combine these univariate effects. However, from a statistical per-
spective, it would be desirable to directly use multiple regression modelling
to jointly estimate multivariably adjusted effects for the variants. To do so,
we built the statistical boosting framework snpboost (Klinkhammer et al.,
2023), which works on batches of variants to overcome the computational
hurdle of large p and yields sparse prediction models while automatically
selecting the most informative variants. The modular and flexible nature
of statistical boosting enables us to extend our framework based on fur-
ther loss functions. By incorporating loss functions for Gaussian, binary,
time-to-event and count data, we can effectively use statistical modelling
to optimize the PRS with respect to the clinical outcome.

2 Methods

For n ∈ N individuals, let y = (y1, . . . , yn)T be the observed phenotype. Let
X ∈ [0, 2]n×p be the observed genotype matrix, where its j-th column xj
corresponds to the j-th variant which is encoded as xi,j = 0 if individual
i has no mutation in variant j compared to the reference genome and
xi,j = 1 and xi,j = 2 in case of heterozygous and homozygous mutations,
respectively. For imputed genotype data, xi,j can fall into the continuous
range [0, 2]. To apply statistical boosting, we model each variant via a
single linear base-learner (component-wise boosting). We specify the loss
function ρ(y, η̂) depending on the type of phenotype; i.e. for quantitative
outcomes we use the classical L2 loss or the check-function for quantile
regression, for binary outcomes the logarithmic loss, for count data the
negative log likelihood of the Poisson distribution and for time-to-event
data the negative log likelihood of an accelerated failure time (AFT) model
(Schmid and Hothorn, 2008) with Weibull distributed survival times Ti
given by

log(Ti) = xT

i β + σW, W ∼ Gumbel(0, 1) (1)

with scaling parameter σ > 0 and standard Gumbel distributed W .
Aiming at minimizing the loss ρ, we estimate η̂ =

∑p
j=1 β̂jxj via statisti-

cal boosting by iteratively fitting the base-learners to the negative gradient
vector of the loss as described in Bühlmann and Hothorn (2007). In order to
deal with large-scale genotype data, we incorporated an additional batch-
building step to restrict the set of base-learners in each boosting iteration
(Figure 1). In the outer loop (shown in blue in Figure 1) we build a batch
of variants by selecting the pbatch best fitting variants according to their
correlation with the current negative gradient vector of the loss function.



Klinkhammer et al. 185

Then, statistical boosting is applied on the chosen batch until the corre-
lations with the current negative gradient of the variants in the batch are
smaller than the latest updated maximal correlation of variants outside the
batch (shown in grey in Figure 1). Finally, we simultaneously monitor the
predictive performance on an independent validation set and the algorithm
is stopped when the predictive performance on the independent validation
set is no longer improving.
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model
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coefficients

and residuals

Check inner
stopping
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fi�ng variants

Compute 
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coefficients
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FIGURE 1. Illustration of the snpboost batch-wise boosting algorithm to make
statistical boosting work on large individual-level genotype data. The grey boxes
reflect the steps inside the batches.

3 Results

In Klinkhammer et al. (2023) we have shown that snpboost can effectively
model the polygenic predisposition for continuous and binary outcomes.
Here, we focus on extending the snpboost framework via new loss functions
to two further types of outcomes.
First, we considered modelling time-to-event data, namely we wanted to
model a PRS for the age of onset of asthma. From the UK Biobank re-
source we extracted n = 395, 644 unrelated British individuals and used
self-reports, ICD-9 codes and ICD-10 codes to identify n = 56, 436 in-
dividuals affected by asthma. Additionally, we assessed the age of onset
as the age when asthma was first diagnosed. For individuals not affected
by asthma, the age at last follow-up visit or, if applicable, age at death
was considered as censoring time. For all individuals, genotype data of
p = 604, 967 variants was available. The data set was randomly split into
training (50%), validation (25%) and test set (25%). We applied an AFT
model with a Weibull distribution via snpboost on the training and val-
idation data, which yielded a PRS comprising p = 1, 622 selected genetic
variants with a non-zero effect size. The quantiles of the distribution of the
estimated PRS on the training and validation data were used to classify
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individuals into three classes: low PRS (PRS < 10% PRS quantile of train-
ing and validation set, ”bottom 10%”), medium PRS (PRS between 10%
and 90% PRS quantile of training and validation set, ”10-90%”), high PRS
(PRS > 90% PRS quantile of training and validation set, ”top 10%”). Fig-
ure 2 shows the predicted lifetime risk for asthma on the test set stratified
over the fitted PRS. Furthermore, we included the PRS as well as sex, age
and the first 10 principal components of the genotype matrix in an AFT
model with Weibull distributed outcome on the training and validation set.
The corresponding prediction on the test set yielded a C-index of C = 0.64
(95% CI: 0.63-0.65).
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FIGURE 2. Cumulative incidence of asthma based on Kaplan-Meier estimates on
test data stratified over three PRS groups, reflecting their genetic predisposition
(stratification based on PRS distribution on training and validation set).

Secondly, we applied quantile regression via snpboost on a set of n =
284, 342 individuals from the UK Biobank (divided into training, validation
and test set) to construct predictive intervals for BMI. For 78% of the
individuals in the test set (n = 56, 984), the observed BMI was covered by
intervals between the predicted 10% and 90% quantiles that were based on
genetic information solely. Figure 3 shows the observed BMI data as well
as the predicted quantiles ordered by predicted mean (50% quantile).

4 Discussion

Our extended boosting framework snpboost enables multivariable statisti-
cal modelling for polygenic risk scores on large and high-dimensional geno-
type data, providing a variety of loss functions for different traits. Quan-
tile regression can be used to construct individual prediction intervals and
additionally comprises median regression as a robust alternative to mean
regression, which can be more suitable for outcomes that are susceptible
to outliers. Regarding time-to-event outcomes, we were able to construct
sparse PRS that can help to stratify the course of a disease. Noteworthy,
using a PRS that was boosted to predict the occurrence of asthma (binary
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FIGURE 3. Observed BMI values as well as predicted 10%, 50% and 90% quan-
tiles for a test set comprising n = 56, 984 individuals.

outcome), neglecting the event time as it is common in the field of PRS
modelling, showed very similar discriminatory power with respect to the
age of onset. Further research is warranted to investigate the potential of
advanced statistical modelling in the prediction of disease courses based on
genetic information.
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Abstract: Deep neural networks (DNNs) enable learning from various data
modalities, such as images or text. This concept has also found its way into
statistical modelling through the use of semi-structured regression, a model ad-
ditively combining structured predictors with unstructured effects from arbitrary
data modalities learned through a DNN. This paper introduces a new framework
called sparse modality regression (SMR). SMR is a regression model combining
different data modalities and uses a group lasso-type regularization approach to
perform modality selection by zeroing out potentially uninformative modalities.
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1 Introduction

Neural networks have become a highly significant area of study and devel-
opment in recent years due to their ability to solve complex problems in a
variety of fields, including computer vision, speech recognition, and natural
language processing. This is largely owed to breakthroughs in deep learn-
ing techniques, which allow for efficient and large-scale training of neural
network models that can accurately capture the underlying patterns and
relationships in large amounts of data.
One of their key features is the flexibility in working with various data types
and structures. Rügamer et al. (2023) proposed a framework for combining
structured regression models and DNNs in a unifying network architecture
(cf. Fig. 1). With their so-called semi-structured regression (SSR) model,
the authors aim to extend the scope of statistical regression to incorporate
non-tabular data modalities, but also to integrate interpretable additive

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Architecture of a semi-structured regression model with one tabular
input for structured predictors and two unstructured data sources (image, text),
each transformed through a deep neural network.

predictors into DNN architectures. This paper presents a sparse extension
of SSR models that enables principled modality selection and thereby allows
to decide in a data-driven fashion which information sources should be
retained in the model and which not.

2 Sparse Modality Regression

We define our setup using a linear mean regression, but note that this
approach naturally extends to 1) additive models by replacing the linear
predictor with smooth functions learned through basis representations, and
2) distributional regression with commonly used parametric distributions
by learning each distribution parameter from multiple data modalities.

Let the different data modalities be defined by x ∈ Rp for the tabular data
and zm,m = 1, . . . ,M for the M unstructured data sources with arbitrary
shapes. We use these modalities to model the outcome of interest Y as

Y = x⊤β +
∑M
m=1Dm(zm)⊤γm + ε, ε ∼ N (0, σ2), (1)

where β ∈ Rp are the linear regression coefficients, Dm the mth (deep)
neural network processing the mth modality to a qm-dimensional latent
representation, and γm ∈ Rqm the coefficients for the latent features in the
final additive combination. Figure 1 depicts an exemplary SSR architecture
for M = 2, with a text description z1 and an image input z2.

Sparsity in Semi-Structured Regression The model (1) can be em-
bedded into one unifying neural network and estimated using first-order
optimization routines, i.e., variants of stochastic gradient descent (SGD)
as popularized in deep learning (see Rügamer et al., 2023). While consid-
ered a general-purpose tool, SGD does not allow for the optimization of
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non-smooth objectives such as the one suggested in this paper:

n∑
i=1

||yi−x⊤
i β−

∑M
m=1Dm(zm,i)

⊤γm||22+λ
{
||β||2 +

∑M
m=1 ||γm||2

}
, (2)

where the first summand corresponds to the usual L2 loss and the second
summand penalizes the M + 1 groups of different data modalities using an
L2,1 group lasso penalty with regularization parameter λ ≥ 0.
It is, however, possible to transfer the above non-smooth optimization prob-
lem to a smooth surrogate using the general framework proposed by Kolb
et al. (2023). The optimization transfer involves two steps: first, the co-
efficients β and γm,m = 1, . . . ,M, in the predictor are overparametrized
using a type of Hadamard product, i.e., β = u0 ⊙ v0 and γm = um ⊙ vm.
The parameters um have the dimensionality of the respective original coef-
ficient vector, whereas vm = vm1 induces one additional scalar parameter
per modality. In the second step, the non-smooth penalty is replaced by a
smooth quadratic penalty on the reparametrized coefficients. The quadratic
penalty term in the overparametrized problem is defined as

λ

2

{∑M
m=0 ||um||22 + v2m

}
, (3)

and it can be shown that the minimum of this penalty, subject to the
constraints imposed by the reparametrization, is precisely equal to the non-
smooth group lasso penalty:

min
u0,v0:β=u0⊙v0

um,vm:γm=um⊙vm

1

2

{∑M
m=0 ||um||22 + v2m

}
=
{
||β||2 +

∑M
m=1 ||γm||2

}
.

(4)
Optimization over the factorized coefficients um,vm using the smooth
penalty (3) is then equivalent to solving the L2,1 regularized group sparse
problem (2) (Kolb et al., 2023).

3 Simulation

In order to examine the proposed Hadamard parametrization framework for
SMR, we simulate n = 2000 observations according to a data-generating
process involving two modalities (tabular and image). The tabular pre-
dictor is simulated based on uniformly drawn covariates x, whereas the
image predictor D(z) is derived from the face value of images of hand-
written digits ranging from 0 to 9 (Deng, 2012). The noise is sampled from
a standard Gaussian. To evaluate the modality support recovery of SMR,
we combine the (initially balanced) structured and unstructured predic-
tors as a convex combination using an influence parameter ρ ∈ [0, 1], i.e.,
Y = (1 − ρ)x⊤β + ρD(z)⊤γ + ε. Our models are implemented in the R
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FIGURE 2. Out-of-sample RMSE and L1 norm of coefficients per modality for
ρ ∈ {0, 0.5, 1} (left to right). The lines indicate the optimal λmin (solid) and the
λ1se chosen by the one-standard-error-rule (dashed).

software package deepregression (Rügamer et al., 2022), and optimized
using SGD with a batch size of 32, learning rate of 5e−3, and momentum
parameter 0.9.

The corresponding results are shown in Figure 2, depicting the regular-
ization paths and test errors of our approach for different ρ values. Results
show that our SMR approach is able to correctly identify non-informative
modalities (if any) without sacrificing predictive power, and thus provides
a valid modality-sparse regression model for a suitable choice of the regu-
larization parameter λ.

4 Application: Petfinder

We apply our approach to multi-modal data from Petfinder.my, a website
that allows people to search for adoptable pets. The modalities comprise
images from pet listings, a text description of the pets, and tabular data
of various attributes such as breed, age, or health condition. We define a
multi-modal SSR processing the images as well as the text, fusing both their
latent representations with the additive predictor defined for the tabular
data. The task is to predict the probability of new pets getting adopted
within 100 days, i.e., a logistic regression version of the model presented
in (1). We apply modality regularization as it is a priori unclear which of
the modalities are informative. The resulting regularization path can be
seen in Figure 3 (right), suggesting the least informative modality for the
adoption probability is in fact the pets’ images. This is in line with findings
from the PetFinder.my Adoption Prediction challenge held in 2019.
In Figure 3 (left), we show the estimated non-linear effect of age for the
sparse model with only tabular and text data, indicating that adoption
probability is increasingly negatively influenced by the animal’s age for
elderly pets.
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FIGURE 3. Left: Estimated non-linear effect of age. Right: Regularization path
with out-of-sample neg. log-likelihood (left axis) and L1 norm of coefficients per
modality (right axis). The lines indicate the best model (solid) and a similarly
performing, but sparse model with only structured and text modality (dashed).

5 Summary

In this work, we presented a novel framework that combines ideas of group
sparse regularization and semi-structured networks to effectively enable
the selection of informative data modalities in multi-modal applications. In
order to learn a sparse representation using off-the-shelf SGD optimization,
we leverage recent findings on regularization in overparametrized regression
models. We demonstrate the effectiveness of our proposed framework in a
simulation study and further apply it to real-world data to showcase its
practical use.
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Abstract: Prediction intervals with equal tail probabilities can be obtained by
minimizing the Winkler loss function via the Hogg estimator. The prediction
obtained this way can provide a more complete picture alongside alternative
intervals centered around an available prediction rule. We illustrate the method
with a dataset from an indoor environmental monitoring application.
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1 Introduction

When predicting a random variable Y , uncertainty can be represented by
means of an interval that predicts Y correctly with coverage probability
1−α. Here, the focus is on prediction intervals based on pairs of quantiles.
Let yp be the p-quantile of Y , such that Pr(Y ≤ yp) = p. A prediction
interval with equal tail probabilities (ETP) can be defined as

IETP
1−α = [yα/2, y1−α/2] ,

which has some appealing invariance properties (see, e.g., Brehmer and
Gneiting, 2021). However, a point prediction µ may be available, deter-
mined independently of the coverage target. In this case, one may favor
the alternative interval

IUTP
1−α = µ± ρ1−α ,

with unequal tail probabilities (UTP), where ρp is the p-quantile of the
absolute prediction error |Y − µ|. He (1997) uses the median prediction
µ = y1/2 for the sake of robustness.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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We argue that ETP intervals can be more meaningful than UTP ones in
some cases. ETP prediction error is less coarse, especially for high cover-
age and asymmetric error distributions. ETP prediction is also less biased
towards groups defined by covariates, in the sense that the prediction error
has sign uncorrelated with the explanatory variables.
We make ETP intervals more interpretable, as much as UTP ones, by
reparameterizing them as

IETP
1−α = µα ± δα ,

where µα = (y1−α/2+yα/2)/2 and δα = (y1−α/2−yα/2)/2. Next, we provide
an efficient and approximate estimator of ETP intervals, as an alternative
to the existing implementation of the Hogg estimator in the R package
quantreg (Koenker, 2022). Moreover, we want to stress the usefulness of
ETP prediction targeted at coverage 1−α when this can be chosen soundly.
Finally, we highlight the non-systematic nature of ETP prediction error,
with an application to sensor data analytics.

2 Methodology

Consider 1 − α prediction of Y = xTβα + ϵα, where x ∈ Rd is a covariate
vector, βα ∈ Rd is the regression coefficient, and ϵα is a noise term whose
quantiles of order α/2 and 1−α/2 are equally distant from zero. Then, ETP
intervals will hold with µα = xTβα. Relatedly to this model, borrowing from
support vector regression, the ∆-insensitive loss function (Vapnik, 1998) is
defined depending on ∆ ≥ 0 as

S(e; ∆) = max(0, |e| −∆) .

The Winkler loss function (see, e.g., Brehmer and Gneiting, 2021) is defined
accordingly, also depending on the hyperparameter α, as

Wα(e; ∆) = α∆ + S(e; ∆) .

The ground truth is given by the true parameter values (βα, δα), which
solve the risk minimization problem

min
(β,δ)

E(Y,x)[Wα(Y − xTβ; δ)] .

Then, an M-estimator can be defined as the solution to the empirical prob-
lem based on available data pairs (Yi, xi)

n
i=1 and defined as

min
(β,δ)

1

n

n∑
i=1

Wα(Yi − xT

i β; δ) ,

This is a special case of the Hogg estimator (Koenker, 2005).
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The Winkler loss is essentially a penalized version of the ∆-insensitive
loss, with penalty term α∆. The Winkler loss function allows to estimate
δα thanks to the penalty term, while using the insensitive loss function
would require to tune δα like a hyperparameter. We exploit this fact in the
following with estimators for βα and δα that depend on the only tuning
aspect, namely, α.
We implemented the estimator in R based on an adaptive Newton method.
Even median regression can be approximately estimated by choosing a
suitably low coverage. At each iteration of the algorithm, the estimate of βα
is updated, then the one for δα is set based on the 1−α-quantile of current
absolute residuals |Y − µα|. The Hessian for βα is firstly approximated
via Berndt-Hall-Hall-Hausman method and then corrected for information
bias through a multiplicative constant that is estimated via optimization.
This procedure could efficiently approximate median regression from the R

package quantreg, which was too cumbersome for our long dataset.

3 Example

The dataset on focus collects data from twelve environmental sensors scat-
tered across an office room in Villach, Austria. Readings relate to Y = tem-
perature (in ◦C), X=clear light and Z=pressure. Each sensor provided data
every ten seconds for six months. The dataset was shared by Brunello et al.
(2021) and also analyzed with different aims in Lambardi di San Miniato
et al. (2022). The first half of the data rows made up the training set, the
remainder served as a test set. The prediction horizon was set equal to one
hour. These data did feature a variety of anomalies that would hardly fit
into a classical environmental model for regular system behavior. Any cen-
tral prediction would not account for the extreme behavior of these sensors.
The more flexible ETP approach would accommodate for them instead.
Each variable was centered around the instant cross-sensor median lagged
by one hour. The median was adopted to account for spatial regularity
across the office, while the lag was introduced to ease up the prediction. Y
served as the response, while the covariates X and Z were lagged by one
more hour for additional ease of prediction. The model is

Yt =β0 + β1Yt−1 + β2Yt−24 + β3Yt−25

+β4Xt−1 + β5Xt−2 + β6Xt−25 + β7Xt−26

+β8Zt−1 + β9Zt−2 + β10Zt−25 + β11Zt−26 + ϵt ,

for t = 27, . . . , T . The included lags account for seasonal auto-regression.
For 1−α = 50%, ETP and UTP intervals are very similar and not reported
here for space reasons. However the results are sharply different for 1−α =
95%.
Figure 1 reports the cumulative distribution function (CDF) of absolute
prediction error beyond thresholds, hence higher curves are better. The
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FIGURE 1. Distribution of test error per sensor, solid lines for ETP and dashed
lines for UTP, 95% prediction.

UTP intervals perform better only occasionally and hardly control tail
events. Sensors 1, 7, and 12 behave more regularly under the ETP predic-
tion, net of all the remaining aspects. The UTP viewpoint is centered on
some median sensor that cannot capture all the variability in the system
on its own.
Residual diagnostics in Figure 2 show a correlation between prediction
error and covariates, in the sense that the distribution of each covariate
should not depend on the sign of prediction error, when this error exceeds
thresholds. ETP is designed to remove the correlation, while UTP makes
systematic prediction errors.
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FIGURE 2. Distribution of covariates per error sign, ETP on top and UTP on
bottom, 95% prediction. Here, x1 and y1 are X and Y lagged by one hour.

4 Closing remarks

In this paper, we highlighted some of the appealing features of ETP predic-
tion intervals, such as robustness to outliers (as inherited from the quantile
regression logic) and lower bias towards groups of observations. Further
developments may focus on making the intervals calibrated within short
time periods in the case of data streams, as is also a concern in conformal
prediction and other resampling techniques.
As a plus, we see that even the Winkler loss function can be optimized by
means of methods that assume some kind of regularity, like the Berndt-Hall-
Hall-Hausman method. We only circumvented the computational issues
arising from a non-smooth loss function, but any advances in this field will
surely benefit also the estimation of ETP intervals.
Future developments may naturally relate to quasi-likelihood and other
more complicated settings with bounded response variables and other model
constraints. Heteroscedasticity may be effectively accounted for by also ex-
pressing the calibration parameter δα as a function of covariates. Care must
be taken as to whether the quantile properties of µα − δα and µα + δα are
retained under this generalization.
ETP prediction intervals prove capable to summarize a relevant regular
pattern and can avoid several false positives in outlier detection. This is
a major advantage in sensor data analytics, as it allows to keep system
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information safe from data contamination and anomalies, due to a quantile-
based approach.
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Abstract: Laplace P-spline models (LPS) combine the P-spline smoother with
Laplace approximations to perform fast Bayesian inference without the need for
Monte Carlo methods. While this approach is appropriate for penalized parame-
ters, inference may be misleading for others when there is little prior or empirical
information about them. We propose an update of the LPS methodology by
splitting the parameter space in two subsets. The first set involves parameters
for which the joint posterior distribution of carefully selected linear projections is
approximated using asymmetric families, while the conditional posterior distribu-
tion of penalised parameters can be treated using Laplace approximations. The
method remains entirely sampling-free and enables fast inference in a Bayesian
framework. The methodology is illustrated with an additive model for ordinal
survey data.

Keywords: Additive model; Bayesian P-splines; Laplace approximation; Skew-
ness.

1 Laplace approximation and Bayesian P-splines

Consider a regression model describing the conditional distribution of a
response y for given covariates xxx. Denote by ξξξ the model parameters: it
includes the regression and spline parameters, plus possibly the (log of
the) scale and (unconstrained transformed) shape parameters. Denote by
p(ξξξ|ηηη) the joint prior density of ξξξ conditionally on hyperparameters ηηη. In the
context of a P-spline model, the latter might include J unknown smooth
functionals fj(·) (j = 1, . . . , J) specified as linear functions of B-splines
spanning each argument range (Marx & Eilers 1998). We assume that the

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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joint conditional prior for the vector θθθ stacking all the vectors of penalized

B-spline coefficients in the model is p(θθθ|λλλ) ∝ exp
(
− 1

2 θθθ
⊤Pλ θθθ

)
, where Pλ

is a positive semi-definite matrix and λλλ = (λ1, . . . , λJ) is the vector of
penalty parameters. The vector of model parameters can be reorganized
as follows, ξξξ = (γγγ⊤, θθθ⊤)⊤ ∈ IRk1+k2 , where γγγ ∈ IRk1 denotes the vector of
non-penalized parameters. If D generically denotes the available data and
if λλλ stands for the vector of hyperparameters ηηη in the context of P-spline
models, then the joint posterior for ξξξ is

p(ξξξ,λλλ|D) ∝ L(ξξξ|D) p(γγγ) p(θθθ|λλλ) p(λλλ).

It is typically explored using Markov chain Monte Carlo methods (MCMC)
(Brezger & Lang 2006). We build up on the methodology described for ad-
ditive models in Gressani & Lambert (2021) and in Lambert (2021) where
Laplace approximations to the conditional posterior of (ξξξ|λλλ,D) and an ad-
ditional approximation to the marginal posterior of (λλλ|D) enable to by-
pass sampling algorithms. Thanks to the Gaussian Markov field (GMRF)
prior (Rue & Held 2005) assumed for the penalized parameters θθθ, the Nor-

mal approximation to the conditional posterior, (ξξξ|λλλ,D)
·∼ Nk1+k2(ξ̂ξξλ,Σλ)

with Σ̂−1
λ = −∂2 log p(ξ̂ξξλ|λλλ,D)/∂ξξξ∂ξξξ⊤, is usually excellent, yielding for the

marginal posterior of λλλ,

p̃λ(λλλ|D) = p(ξξξ,λλλ|D)/p̃G(ξξξ|λλλ,D) ∝ p(ξ̂ξξλ,λλλ|D)
∣∣∣Σ̂λ∣∣∣ 12 ,

see Tierney & Kadane (1986) for the same strategy in the approximation of
a marginal distribution and Wood & Fasiolo (2017) for related work. The
Laplace approximation might not be suitable for some of the unpenalized
parameters γγγ in ξξξ, especially when the combined information coming from
their prior and the likelihood is sparse.

2 Asymmetric posterior for non-penalized parameters

Using the same arguments as before, the conditional posterior of (θθθ|γγγ,λλλ,D)

is approximately Gaussian, (θθθ|γγγ,λλλ,D)
·∼ Nk2

(
E(θθθ|γγγ,λλλ,D), Σ̂

θ|γ
λ

)
, where

E(θθθ|γγγ,λλλ,D) = θ̂λ+Σ̂θγλ

(
Σ̂γγλ

)−1

(γγγ−γ̂γγλ) and Σ̂
θ|γ
λ = Σ̂θθλ −Σ̂θγλ

(
Σ̂γγλ

)−1

Σ̂γθλ .

Substituting that Normal approximation in the denominator of the follow-
ing identity, pγ(γγγ|λλλ,D) = p(γγγ,θθθ|λλλ,D)/p(θθθ|γγγ,λλλ,D), one gets

pγ(γγγ|λλλ,D) ∝ p
(
γγγ,E(θθθ|γγγ,λλλ,D)

∣∣λλλ,D) ∣∣∣Σ̂θ|γλ ∣∣∣ 12 .
Consider now the singular value decomposition (SVD) of Σ̂γγλ = VZV⊤

where V = [v1 . . .vk1 ] denotes the matrix of orthonormal eigenvectors, ζζζ
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FIGURE 1. Approximated marginal posterior density for (γγγ|λλλ,D) compared to

MCMC samples when λλλ = λ̂λλ.

the eigenvalues and Z = diag(ζζζ). Let γ̃γγ = Z− 1
2V⊤(γγγ − γ̂γγλ). Combined with

the previous approximation, one gets pγ̃s(γ̃s|λλλ,D) ∝ pγ(γ̂γγλ+γ̃s
√
ζsvs|λλλ,D).

Each of these densities can be approximated using a skew-Student (ST),

yielding pγ(γγγ|λλλ,D) ≈
∏k1
s=1

1√
ζs
φ(γ̃s|ψ̃s, ω̃2

s , α̃s). Therefore, one has the

following stochastic representation for (ξξξ,λλλ|D),

(ξξξ,λλλ|D)
·∼ Nk2

(
E(θθθ|γγγ,λλλ,D), Σ̂

θ|γ
λ

)
×

k1∏
s=1

ST(γ̃s|ψ̃s, ω̃2
s , α̃s)× (λλλ|D) .

It can be used to quantify uncertainty on any function of the model pa-
rameters or to make predictions. We refer to Lambert & Gressani (2023)
for more details.

3 Application on survey data

The proposed methodology is illustrated on data from the European Social
Survey (ESS 2018) for Wallonia, one of the three regions in Belgium. Each
of the 552 participants (aged at least 15) was asked to react to the following
statement, Gay men and lesbians should be free to live their own life as they
wish, with a positioning on a Likert scale going from 1 (=Agree strongly)
to 5 (=Disagree strongly), with 3 labelled as Neither agree nor disagree
(with relative frequencies 1: 54.9% ; 2: 30.4% ; 3: 8.2% ; 4: 5.4% ; 5: 1.1%).
That ordinal response was analyzed using the proportional odds model
with the number of completed years of education (14.1±4.4 years) and age
(47.3± 18.5 years) entering as additive terms,

logit[P (Y ≤ r|x)] = ηr = γr + f1(educ) + f2(age) .
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FIGURE 2. Fitted additive terms for eduyrs and age with pointwise 95% credible
intervals.

There is a marked positive skewness in the marginal posterior distribution
of γ4, caused by the small proportion of respondents in the survey express-
ing an explicit disagreement with the submitted statement. The proposed
approximation to the posterior distribution of (γγγ|λλλ,D) can be visualized
on Fig. 1 (solid red curves) and confronted to MCMC samples (grey his-
tograms) taken as a proxy for the true underlying distributions. The close
agreement between the two results confirm the quality of the approxima-
tion bypassing the need for Monte Carlo sampling. The estimated additive
terms in Fig. 2 suggest a non-significant effect of eduyrs, but a tolerant
perception of homosexuality tending to decrease with age, with a marked
change in attitude revealed beyond age 60.
The R-package ordgam to reproduce the results of the paper can be down-
loaded from https://github.com/plambertULiege/ordgam.
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Abstract: We consider the class of Erlang mixtures for the task of density esti-
mation on the positive real line when the only available information is given as
local moments, a histogram with potentially higher order moments in some bins.
By construction, the obtained moment problem is ill-posed and requires regu-
larization. Several penalties can be used for such a task, such as a lasso penalty
for sparsity of the representation, but we focus here on a simplified roughness
penalty from the P-splines literature. We show that the corresponding hyperpa-
rameter can be selected without cross-validation through the computation of the
so-called effective dimension of the estimator, which makes the estimator practical
and adapted to these summarized information settings. The flexibility of the lo-
cal moments representations allows interesting additions such as the enforcement
of Value-at-Risk and Tail Value-at-Risk constraints on the resulting estimator,
making the procedure suitable for the estimation of heavy-tailed densities.
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1 Local moment matching problem

Consider X1, ...XN a N -sample of a positive real random variable X, and
let B = (B1, ..., BJ) be a finite partition of R+, where Bj = [bj−1, bj [
(j = 1, . . . , J) are called bins. Let K1, ...,KJ ∈ N be the maximum orders
of the observed empirical moments within bins and denote the set of these
empirical moments by

µ̂ =

{
µ̂j,kj =

1

N

N∑
i=1

Xk
i 1Xi∈Bj

: j = 1, . . . , J ; kj = 1, . . . ,Kj

}
.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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We denote separately by π̂ =
{
π̂j = 1

N

∑N
i=1 1Xi∈Bj

}
the zeroth moments.

In this paper, we discuss the reconstruction of the distribution of X from
(π̂, µ̂). Table 1 gives a numerical example, constructed from N = 750
samples from a LogNormal(µ = 0, σ = 0.5). The exposed structure is quite
common with insurance losses, where attritional and large losses are usually
treated separately. The lack of detailed information in this case would be
caused by confidentiality issues. This type of data may also occur in other
contexts, see e.g. Lambert (2022).

TABLE 1. Summary statistics for the lognormal example.

j [bj−1, bj [ nj Kj π̂j µ̂j,1 µ̂j,2 µ̂j,3

1 [0.00, 1.90[ 677 3 0.900 0.86 0.96 1.21
2 [1.90, 3.20[ 64 3 0.085 0.20 0.46 1.10
3 [3.20,+∞[ 9 3 0.012 0.05 0.24 1.21

Note that zeroth and first order moment in the last bin conveniently corre-
sponds to the value at risk and tail value at risk at level α = 0.01. In this
work, we propose to estimate the density of X in the semi-parametric class
of Erlang mixtures from the observed local moments.

2 Erlang mixtures

A random variable X has a mixed Erlang distribution with scale s ∈ R+

and mixing probability measure ν ∈ P(R+), denoted by X ∼ MΓ(ν, s), if
and only if its moment generating function can be written as

M(t) =

∫
(1− st)−αν(dα).

Tijms (1994, Theorem 3.9.1) shows that this model is dense in the set of
positive random variables, even under the restriction that Supp(ν) ⊆ N.
This result has generated a lot of interest and several extensions exists for
multivariate, censored or truncated data, see e.g. Caussette et al. (2016)
or Gui et al. (2021). Denote by π(ν, s), µ(ν, s) and Σ(ν, s) respectively the
expectations of π̂ and µ̂ and the variance of µ̂ under the hypothesis that
X ∼ MΓ(ν, s). Since the underlying raw data are i.i.d, the vector π̂ follows a
multinomial distribution. Then, conditionally on the value of π̂, the vector
µ̂ can be approximated asymptotically by a Gaussian random vector. The
log-likelihood of our model is then given (under this approximation) by:

ℓ(ν, s|π̂, µ̂) = π̂T ln(π(ν, s))− 1

2
ln|Σ(ν, s)| − 1

2
∥µ̂− µ(ν, s)∥2Σ(ν,s).

Unfortunately, maximizing ℓ directly produces rough density estimates. To
mitigate this behavior, we propose to penalize the roughness of ν directly.
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3 Discrete smoothness penalization

Consider from now on that the measure ν is supported on {1, ..., n}, that is
ν =

∑n
i=1 piδi. Enforcing smoothness in density estimation is usually done

through a rth-order penalty:

Pen(ν, s) = λ2

∫ (
f
(r)
MΓ(ν,s)(x)

)2
dx = λ2s

−2r−1pTP (r)p.

If the factor s−2r−1 can simply be incorporated into λ2, the n × n ma-
trix P (r) is dense, which induces high computational cost. In addition,
λ2 cannot be calibrated through cross-validation since holding out testing
data would not be acceptable in the considered sparse information context.
Leveraging the P-spline literature, we propose to replace this penalty by
a discrete penalization of the mixture weights {p1, ..., pn}. Neglecting an
additional s−1 factor, the mode of the (i+ 1)th density in the mixture is at

(xi, yi) :=

(
si,

iie−i

i!

)
, i ∈ {1, . . . , n}. (1)

Note that x1, . . . , xn are regularly distributed on the positive real line.
Therefore, we suggest to monitor the regularity of the density estimate by
the regularity of the sequence of weighted modes, p1y1, ..., pnyn. The corre-
sponding penalty matrix, P̃ (r) = D(r)TD(r) (where D(r), is the rth finite
difference matrix) is sparse – only the (2r−1) central diagonals are non-zero
– which is computationally efficient. Furthermore, the penalty parameter
λ2 can be selected iteratively using the concept of effective dimension, see
e.g. Eilers (2018):

λ2 ←−
tr
(
(H + λ2P̃

)−1
H)− r

pTP̃ (r)p
.

The trace in the numerator is the effective dimension of the model, con-
structed from the Hessian matrix H of the loss function w.r.t. p. We provide
detailed arguments for the proposed estimation techniques and detailed
simulation studies to assess the performance of the proposed approach.

4 Illustration

From the set of moments depicted in Table 1, we obtain the optimal Erlang
mixture depicted in Figure 1 (a,b,c). Figure 1 (d) shows the convergence of
the procedure w.r.t. the number K of empirical moments used to estimate
the density, as assessed using S = 50 resamples from the lognormal model.
It shows that the distance between the density estimate and the true den-
sity (as measured by ℓ1 and ℓ2 distances between quantile functions and
distribution functions, as well as the Kullback-Leibler divergence) decreases
significantly with the number of available empirical local moments.
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FIGURE 1. Panels (a), (b) and (c) provide information when 3 moments are
observed within each bin on top of the frequencies. The histogram in (a) repre-
sents π̂, while the red curve represents the density estimate. Couples (xi, piyi)
from Equation (1) in panels (b) & (c) represents quantile-quantile plots of the
estimated density against the underlying raw data and the true density. Panels
(d) represents the median of the distance statistics across lognormal resamples
for an increasing number of observed local moments, renormalized to be 1 for the
least informative setting.
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Abstract: Data confidentiality is becoming increasingly important, resulting in
stricter policies regarding accessibility of individual records. A federated data
setting wherein analysis is performed without the need to pool all samples from
multiple sources, thus enabling the data to stay with the data custodian, offers
a compromise. This paper proposes a framework for fitting a linear mixed model
when only the mean, covariance, and sample size of the federated data are made
available. This is largely anchored on the statistical sufficiency and likelihood
principles applied to linear models with and without random effects. We apply
this approach to a real data set and show that we can obtain identical inference
as the strategy that uses the pooled unit-level data. Although similar to individ-
ual patient data meta-analysis settings, our approach has the benefit of accessing
the correlation structure among relevant variables, which enriches the modelling
process. Simplicity, computational efficiency, and potentially wider scope of im-
plementation through any statistical software distinguish our approach from the
existing strategies in the literature. Potential applications of this methodology
include health research and ecological inference, to name a few.
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1 Background

A federated data setting serves as a compromise to preserve data privacy
while still permitting data analysis. Classical statistical and machine learn-

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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ing models require unit-level samples, and in a typical federated data anal-
ysis, a network is set up such that the models are implemented at each
data provider’s node and only the parameters are sent to the analyst’s
node, which then performs some kind of aggregation to build the global
model. This is typically an iterative process, requiring regular communi-
cation among the data providers and the analyst. This paper proposes a
simple framework for fitting linear models and linear mixed models when
only the mean, covariance, and sample size of the federated data are pro-
vided once by the data custodians. It exploits the principles of data re-
duction namely the sufficiency and likelihood principle (see e.g. Casella &
Berger, 2002), which will be discussed in Section 2, along with the details of
our proposed approach. Section 3 discusses its application to real patient
data from hospitals and its potential in other fields before we provide a
conclusion.

2 Proposed approach

2.1 Principles of data reduction

The core principles upon which this paper is anchored relate to the concept
of statistical sufficiency and likelihood, which are discussed thoroughly in
the book of Casella & Berger (2002). The sufficiency principle guarantees
that the entire sample need not be available to make inferences about a
parameter θ as long as a sufficient statistic T (X) exists; that is, the infer-
ence about θ depends on the sample only through the sufficient statistic
T (X), such that a sample x1 having a sufficient statistic T (x1) will generate
the same conclusion as another sample x2 if T (x1) = T (x2) even though
x1 ̸= x2. In other words, even if the only information known is T (x), infer-
ence about the parameter of interest θ can still be made, thus enabling data
reduction without loss of important information contained in the sample
about the parameter of interest. Casella & Berger (2002) proceed to argue
that in a situation wherein only T (x1) and not the full sample x1 is avail-
able, the probability distribution given the sufficient statistic, denoted as
P (X = x2|T (X) = T (x1)), can be used to draw a sample x2 and gener-
ate equivalent information about θ. However, this conditional probability
distribution might be difficult to obtain in practice. In this case, the likeli-
hood principle may provide additional support which does not necessitate
a particular probability distribution. Taking for instance the likelihood for
the population parameter µ of independent and identically distributed ran-
dom variables X1, ..., Xn following a normal distribution N(µ, σ2) with σ2

known, we find that the likelihood principle implies that regardless of the
values of x2, as long as its sample mean is identical to that of x1, the con-
clusion regarding µ will be the same. Hence, x2 can be randomly generated
from any distribution as long as its sample mean is exactly equal to that
of x1, and the inference regarding µ will still be equivalent.
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2.2 Linear regression model

Given n observations, an intercept, and p− 1 predictors, let X denote the
n × p design matrix and y be the n × 1 vector of responses. The least
squares estimator can then be obtained using β̂ = (XTX)−1XTy which
is also the maximum likelihood estimator under the normality assumption.
Writing out the matrices reveals that the elements of XTX and XTy
can be derived from the mean, covariance matrix, and sample size even
without having access to the individual data points in X. Extending to the
case when there are m multiple sources of data but under the assumption
that the observations coming from the same source are uncorrelated, the
parameters are estimated by

β̂ =

(
m∑
h=1

XT
hXh

)−1 m∑
h=1

XT
h yh

wherein Xh and yh are the design matrix and response vector, respectively,
from data source h (h = 1, ...,m) (Lee et. al., 2017).

For a practical implementation, we created functions in R which only re-
quire the sample size and the mean and covariance matrix of the response
and predictors. We were able to generate exactly the same output (except
for the residuals) as when the lm function is used on the pooled individual
observations. The key to this is to adapt the QR decomposition imple-
mented in the lm function to the case at hand; i.e. solving

RXTX β̂ = (QXTX)TXTy

where RXTX is an upper triangular matrix and QXTX is an orthogonal
matrix obtained from the decomposition of XTX. A major drawback of
this strategy though is the need to use special functions to implement
parameter estimation.

2.3 Linear mixed model

A more realistic assumption when handling federated data is that the ob-
servations from the same source are more similar than observations from
different sources. To account for this, a linear mixed model is more appro-
priate. Let yhi be the continuous response of individual i from data source
h; xhi is a p-dimensional vector consisting of an intercept and p − 1 pre-
dictors; β is the vector of fixed effects; zhi is the q-dimensional covariate
vector corresponding to the q-dimensional random effects uh representing
the deviation of source h from the overall pattern; and ϵhi is the random er-
ror. The linear mixed model with source-level random effects is then given
by

yhi = xThiβ + zThiuh + ϵhi
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Parameter estimation through the log-likelihood involves

l(β, σ2,V) = −1

2

m∑
h=1

{log|Σh|+ (yh −Xhβ)TΣ−1
h (yh −Xhβ)}

where Xh and yh are the design matrix and response vector, respectively,
of source h, |.| is the matrix determinant and Σh = Σh(σ2, V ) = ZhV ZTh +
σ2Inh

. Due to the seemingly entangled data and parameter matrices, it is
not straightforward to identify the aggregate statistics that can be used in
place of individual data points. Luo et. al. (2022) showed that by utiliz-
ing the Woodbury matrix identity and some linear algebra concepts, the
data can be disentangled from the parameters to reconstruct the profile
log-likelihood without the need for individual records. In their approach,
only XT

hXh, XT
hyh, yThyh, and nh from each data source h are required to

perform parameter estimation either through maximum likelihood (ML) or
restricted maximum likelihood (REML). This coincides with the idea of Pa-
padimitropoulou et. al. (2018) who proposed a methodology in the context
of meta-analysis for performing linear mixed modelling from the mean and
standard deviation of the continuous outcome in the treatment and control
group by generating what they coined as pseudo-IPD (individual patient
data). These pseudo-IPD should have exactly the same mean and standard
deviation as the ones provided in studies to exploit the sufficiency principle.
We extend this approach to accommodate multiple variables and use it in
the context of federated data. Given the mean vector (µ̂h), covariance ma-

trix (Σ̂h) and sample size nh from data source h, the following algorithm
generates pseudo-data for the p− 1 predictors and response variable:

1. Generate W = [w1, ...,wi, ...wn]T which is an n × p matrix where
each column is independently distributed as N(0, 1) (although any
distribution will do).

2. Compute the mean vector µ̂W (p×1) and the covariance matrix Σ̂W

(p× p) of W.

3. Generate the ith pseudo-data point as

xi = µ̂h + LΣ̂h
(LΣ̂W

)−1(wi − µ̂W)

where LΣ̂h
and LΣ̂W

are the lower triangular matrices of the Cholesky

decomposition of the given covariance matrix Σ̂h and the covariance
matrix of W, respectively.

Linear mixed model estimation with a random intercept can then be per-
formed using the generated pseudo-data in any statistical package.
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3 Application to real data

We apply the proposed approach to model the [log] length of hospital stay
after COVID-19 infection (in days) regressed on age (in years) and gender
(0-female, 1-male), including an interaction effect. We estimated a linear
mixed model on the actual data pooled from 98 hospitals and compared the
results to those obtained using the proposed framework. Figure 1 displays
the results, where we see that only the residuals are different between the
two. Needless to say, residuals require the individual responses, hence the
difference.

FIGURE 1. Comparing results of lmer function applied to the full actual data
(left) and to the pseudo-data generated from the sufficient statistics (right).

Aside from generating exactly the same parameter estimates for the fixed
and random effects, our approach can also replicate the results of perform-
ing partial F test and model selection via AIC. In contrast to the study of
Luo et. al. (2022) which also yields exactly the same estimates for LMM,
our approach is a simple one in the sense that it does not need sophisti-
cated programmed functions or packages. Additionally, the concept can be
applied using any statistical software that can estimate LMM parameters,
thus enabling a wider scope of implementation among all data practitioners
alike. Another advantage of our approach, aside from its simplicity, is the
computational efficiency gained from generating only one set of synthetic
data compared to methodologies that simulate data multiple times and
aggregate the estimates to form a single parameter estimate. We are also
spared from the question of how many simulations to run and which aggre-
gation method to best implement. Lastly, in contrast to federated learning
algorithms in the literature, our approach does not require more than one
communication iteration among the multiple sources and the data analyst’s
computer, nor do we need to set up a network among the databases, hence
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significantly minimizing, if not totally eliminating, the risk of disclosing
sensitive data.

A major limitation of our proposed approach is the inability to compute
residuals, which require individual response values from the original data.
Another consequence of our approach is the inability to perform training
and testing since partitioning the original data is not possible. A future
endeavour is to generate pseudo-data with similar distributional properties
as the unknown actual data, but this might require more than just the
summary statistics.

Meta-analysis is a field related to federated learning in terms of constructing
a common global model to analyze and synthesize the information from
multiple studies or sources. Hence, we borrow some ideas to deal with the
challenges of federated data analyses. However, Papadimitropoulou et. al.
(2018) discuss that having access to individual-level data when performing
meta-analysis is still preferred. Thus, although meta-analysis and FDA
have similarities, using an aggregate data meta-analysis method directly to
perform FDA may not necessarily be the best option.

4 Conclusion

In this paper, we have demonstrated that parameter estimation of a linear
mixed model can be performed on federated data by generating synthetic
data from the mean vector and covariance matrix provided by each data
source. The principles of statistical sufficiency and likelihood provide a good
theoretical support to the validity of the proposed framework. Estimates
achieved from this approach are identical to those obtained from the pooled
individual-level data. Extending this approach to generalized linear mixed
models is a current work in progress. Potential applications of this method-
ology not only include health research. Fields such as ecological inference
which is dealt with by social scientists, political scientists, economists, and
ecologists can benefit from this approach.
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Abstract: Feedforward neural networks (FNNs) have many similarities to the
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1 Introduction

In recent years, neural networks have experienced great success in the pre-
diction of complex problems (LeCun et al., 2015). However, while neural
networks exhibit strong predictive performance, they are viewed as “black-
box” algorithms, i.e., their predictions are not easily understood and dif-
ficult to interpret. However, feedforward neural networks (FNNs) can be
viewed through a statistical lens and seen as an alternative statistical model
for non-linear regression. Thus, we aim to leverage the inherent intelligi-
bility present in statistical modelling and demonstrate the inferential ca-
pabilities of FNNs, highlighting how these models can be used for prob-
lems beyond “pure prediction”. The testing of the irrelevant-input-node
hypothesis can inform us whether the effect of a given covariate on the
response is significantly different from zero (White, 1989). Combining this
with covariate-effect plots and their associated uncertainty, the outputs of
FNNs become more akin to classical statistical models.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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2 Feedforward Neural Network

We assume a model of the form

yi = NN(xi) + εi,

where yi is the response for the ith individual with covariate vector xi =
(1, x1i, x2i, . . . , xpi)

T, εi is a random error that we assume to have aN(0, σ2)
distribution, and

NN(xi) = γ0 +

q∑
k=1

γkϕ

 p∑
j=0

ωjkxji


is the neural network regression model, where p is the number of covariates
(input nodes), and q is the number of hidden nodes. The parameters are:
ωjk, the weight that connects the jth input node to the kth hidden node;
γk, the weight that connects the kth hidden node to the output node; and
γ0, the bias term associated with the output node. The function ϕ(·) is the
activation function for the hidden layer, which is often a logistic function.
Given our assumption that εi ∼ N(0, σ2), maximum likelihood is used to
estimate the parameters.

3 Hypothesis Testing

Hypothesis tests can be used to determine the statistical significance of
individual parameters, or more appropriately for neural networks, they can
be used to determine the statistical significance of groups of parameters.
As each input node has multiple weights associated with it, we can make
use of the multiple-parameter Wald test to test a single hypothesis on each
of these parameters, i.e., test the overall relevance of covariate xj by testing
H0 : ωj = 0q, where ωj = (ωj1, ωj2, . . . , ωjq)

T is the vector of weights that
connects input node j to the hidden layer and 0q is a zero vector of length
q. Using the fact that (asymptotically) ω̂j ∼ N(ωj ,Σω̂j

), where Σω̂j
is the

relevant q × q sub-matrix of the variance-covariance matrix, Σ̂ (which is
the inverse of the observed information matrix). Then, we have that

(ω̂j − ωj)TΣ−1
ω̂j

(ω̂j − ωj) ∼ χ2
q

from which a p-value can be obtained by setting ωj = 0q and comparing

this statistic to the χ2
q distribution. However, the estimation of Σ̂ can be

problematic due to the issue of parameter redundancy in FNNs, which leads
to unidentifiability in some of the parameters.
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4 Covariate Effects

When modelling the relationship between a covariate and a response, there
are two natural questions to ask. First, is there any relationship? This
is covered by the significance testing presented above. Second, if there is
a relationship, what is the nature of this relationship? To this end, we
consider a graphical approach to understanding the potentially complex
covariate effects that are captured by the neural network model. A common
approach to assess the relationship between a covariate and the response is
using partial dependence plots (Friedman, 2001). The “partial dependence”
of the response on xj can be estimated from the data using

NNj(x) =
1

n

n∑
i=1

NN(x(i,1), . . . , x(i,j−1), x, x(i,j+1), . . . , x(i,p)), (1)

where x(i,j) is the value of the jth covariate for the ith individual. Equation

1 can be computed for a set of x values, and the pairs of points, (x,NNj(x)),
can be used to construct a plot.
However, while the partial dependence plot provides the change in the
average predicted response value as xj varies, it is also useful to consider
the difference in the average predicted response for a d-unit increase in
xj . This then plays the same role as a regression coefficient obtained from
classical statistical models. Thus, we define the effect of a d-unit increase
in xj on the response as

β̂j(x, d) = NNj(x+ d)−NNj(x) (2)

where d is often set to one or the standard deviation of xj . Again, the

(x, β̂j(x, d)) pairs can be used to construct a plot, which we term a Partial
Covariate-Effect plot (PCE).
As the weights of the neural network are estimated using maximum likeli-
hood, there are a number of methods available to estimate the associated
uncertainty of these functions, e.g., the delta method and bootstrapping.

5 Application to Data

The Boston housing data set is available in James et al. (2022). It con-
tains information relating to housing in 506 communities in the Boston
area in 1970. The aim of the study was to examine the relationship be-
tween twelve explanatory variables and the median house price for each
community (medv). For this analysis, we will fit a neural network with all
explanatory variables, however, for brevity, we focus on only two explana-
tory variables: the proportion of the population that fall into a ‘lower status’
categorisation (lstat), and the average number of rooms per dwelling (rm).
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FIGURE 1. PCE plots for lstat (p-value < 0.001) and rm (p-value < 0.001).

The PCE plots for lstat and rm, and their associated p-values from the
Wald test, are displayed in Figure 1. Both terms are deemed statistically
significant. From the plots, we see that an increased value of lstat has a
negative effect on medv, which weakens as lstat increases. On the other
hand, rm has a positive effect, which increases as rm increases. All code
for performing the Wald test and visualising the covariate-effect plots are
available in the R package statnn (McInerney and Burke, 2022).

6 Discussion

Viewing neural networks as statistical models, and embedding them in a
maximum-likelihood-based framework, can help improve their overall in-
terpretability. This leads to more statistically-based outputs that are more
familiar in the statistical modelling context. However, as mentioned above,
there can be issues in the estimation of the variance-covariance matrix.
Results from simulation studies, which will be discussed in our presenta-
tion, will highlight the scenarios where Σ̂ is valid, and, show that, when
this is the case, the aforementioned methods of uncertainty quantification
perform as expected.

Acknowledgments: This work has emanated from research conducted
with the financial support of Science Foundation Ireland under Grant num-
bers 18/CRT/6049 and 16/RC/3918.

References

Friedman, J. H. (2001). Greedy function approximation: A gradient boost-
ing machine. The Annals of Statistics, 29, 1189 – 1232.



218 Feedforward neural networks from a statistical-modelling perspective

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2022). ISLR2: In-
troduction to Statistical Learning, Second Edition, R package version
1.3-1.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521,
436 – 444.

McInerney, A., and Burke, K. (2022). statnn: Feedforward neural networks
as statistical models, R package version 0.0.0.9.

White, H. (1989). Learning in Artificial Neural Networks: A Statistical
Perspective. Neural Computation, 1, 435 – 464.



Modelling medical claims data using
Markov-modulated marked Poisson processes

Sina Mews1, Bastian Surmann1, Lena Hasemann1, Svenja
Elkenkamp1

1 Bielefeld University, Germany

E-mail for correspondence: sina.mews@uni-bielefeld.de

Abstract: We explore Markov-modulated marked Poisson processes (MMMPPs)
as a natural framework for modelling patients’ disease dynamics over time based
on medical claims data. The approach is illustrated by modelling drug use and
interval lengths between consecutive physician consultations of patients diagnosed
with chronic obstructive pulmonary disease (COPD).

Keywords: continuous time; disease process; hidden Markov model (HMM);
informative observation times; maximum likelihood.

1 Introduction

In medical claims data, observations do not only occur at random points
in time but are also informative, i.e. driven by unobserved disease levels, as
poor health conditions usually lead to more frequent and hence clustered
healthcare interactions over time. Neglecting such an informative observa-
tion process in the analysis of disease dynamics potentially leads to biased
parameter estimates (see, e.g., Pullenayegum and Lim, 2016). While joint
models incorporating both informative observation times and disease pro-
cesses exist, they mostly rely on data with directly observed disease stages
and assume pre-scheduled examinations with informative missingness in-
stead of patient-initiated visit times.
To jointly model the informative event times in claims data and additional
data like patients’ drug use collected at these event times, we propose to
use Markov-modulated marked Poisson processes (MMMPPs) comprising
two state-dependent processes: the observation process (corresponding to
the event times) and the mark process (corresponding to event-specific in-
formation). Both processes are governed by an underlying state process,

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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which is modelled as a continuous-time Markov chain, whose states serve
as proxies for the patients’ latent disease levels. While MMMPPs are not
new in themselves, to our knowledge, only Lange et al. (2015) and Alaa
et al. (2017) use similar modelling approaches in the medical context. Our
contribution extends these existing methods to a more general representa-
tion of the marks’ state-dependent distributions and focuses on extracting
information on disease dynamics from claims data.

2 Methods

We consider (claims) data containing information on the random observa-
tion times T0, T1, . . . , Tn, 0 = T0 < T1 < . . . < Tn, which occur at irregu-
larly spaced points in time, as well as additional data Yt0 , . . . , Ytn collected
at the realised observation times. These sequences of random variables are
referred to as the observation process and the mark process, respectively,
and depend on an underlying, unobserved state process {St}t≥0. The state
process is modelled as an N -state continuous-time Markov chain. Tran-
sitions between the states are governed by a transition intensity matrix
Q = (qij)i,j=1,...,N , whose off-diagonal elements qij ≥ 0, i, j = 1, . . . , N ,
i ̸= j, can be interpreted as the rates at which transitions from state i
to state j occur. The duration in each state i = 1, . . . , N is exponentially
distributed with parameter qii =

∑
j ̸=i qij , where −qii is the i-th diago-

nal entry in Q. Furthermore, the initial distribution of the state process is
denoted by δ = (δ1, . . . , δN ), where δi = Pr(S0 = i).
The observation process is modelled as a doubly stochastic point process,
namely a Markov-modulated Poisson process (MMPP) whose event rates
λi, i = 1, . . . , N, are selected by the underlying Markov chain. Within each
state, the waiting times between consecutive events Xtτ = Tτ − Tτ−1, τ =
1, . . . , n, are exponentially distributed with parameter λi. Specifying the ob-
servation process as an MMPP thus accounts for the time-varying intensity
of the observations and their temporal dependence. For the mark process,
we assume the distribution of a variable (i.e. mark) Ytτ collected at observa-
tion time tτ to be fully determined by its underlying state, with the Markov
chain selecting which state-dependent distribution fi(ytτ ) = f(ytτ |stτ = i)
is active at time tτ . As the state-dependent distributions can take on any
(parametric) form, various data types like binary, count, or continuous vari-
ables can be considered in the mark process.
Subject to the unobserved Markovian state process, the MMMPP jointly
models the mark process and the observation process. To evaluate the
corresponding likelihood of the model, inferential tools from the hidden
Markov model (HMM) framework, in particular the corresponding effi-
cient algorithms for parameter estimation, can be applied. Let the integer
τ = 1, 2, . . . , n denote the index of the observation in the sequence and
define the observation process by its waiting times. Then the likelihood
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of the observed sequence {(xτ , yτ )}τ∈{0,1,...,n} can be calculated using the
HMM-based forward algorithm (Lu, 2012):

L = δP(y0)
( n∏
τ=1

exp
(
(Q−Λ)xτ

)
ΛP(yτ )

)
1, (1)

where P(yτ ) = diag
{
f1(yτ ), . . . , fN (yτ )

}
and Λ = diag

{
λ1, . . . , λN

}
are

diagonal matrices and 1 ∈ RN denotes a column vector of ones. To estimate
the model parameters, we numerically maximise the joint likelihood over
all patients, which is the product of the individual likelihoods given in (1).

3 Case study

3.1 Data and model formulation

We consider data from one of the largest statutory health insurance (SHI)
companies in Germany, covering the years 2005 to 2020. Our study popu-
lation consists of patients initially diagnosed with chronic obstructive pul-
monary disease (COPD) in 2008 who have a mild to moderate age-adjusted
Charlson comorbidity index (ACCI). The final data set includes 470 persons
(141 males and 329 females) with 112,297 observations in total, covering a
mean period of 12 years per person (min: 6; max: 13) after initial COPD
diagnosis.
For modelling COPD patients’ general health condition over time, we con-
sider the interval length between consecutive physician consultations (i.e.
the waiting times) and patients’ drug use measured in daily defined doses
(DDDs) — a standardised unit for drug consumption — based on physi-
cians’ prescriptions contained in the SHI data. These are jointly modelled
as an MMMPP, where the waiting times follow state-dependent exponen-
tial distributions, while the DDDs are assumed to follow a zero-adjusted
gamma distribution with state-specific parameters. As we are interested
in inter-individual differences in the state-switching dynamics, we model
the state transition intensities as a function of patients’ sex, their age at
initial diagnosis (ageD), and the ACCI (dichotomised into either mild or
moderate age-adjusted comorbidities):

qij = exp
(
β
(ij)
0 + β

(ij)
1 sex + β

(ij)
2 ACCI + β

(ij)
3 ageD

)
, for i ̸= j.

For simplicity, we restrict ourselves to a 2-state model, noting that the
methodology is generally applicable for any finite number of states.

3.2 Results

The model results regarding the estimated parameters of the observation
process and the mark process show that overall, state 1 is characterized
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TABLE 1. Parameter estimates for the observation process and the mark process.

parameter state 1 state 2
δi (initial state prob.) 0.707 0.293
λi (rate of exponential dist.) 0.123 0.029
µi (mean of gamma dist.) 80.9 124.5
σi (std. deviation of gamma dist.) 85.0 116.9

π
(i)
0 (prob. at zero) 0.726 0.370

by frequent (i.e. roughly weekly) healthcare interactions and high drug use
over long periods (cf. Table 1). This could be interpreted as a state of poor
health condition or, alternatively, a period in which a treatment needs to
be appropriately adjusted to a patient (e.g. right after disease diagnosis)
— an interpretation supported by the estimated initial state probabilities,
as it is 2.5 times more likely that a person is in state 1 rather than state 2
right after their initial COPD diagnosis. In contrast, state 2 consists of, on
average, approximately one healthcare interaction per month with higher
DDDs at a single consultation. Because of the low interaction rate, the
relative (e.g. per month) drug use here is lower than in state 1. Therefore,
we tentatively describe state 1 as the high and state 2 as the low disease
level. Importantly, however, the disease states are derived in a data-driven
way and as such should not be expected to match disease stages postulated
in the literature.
Based on the estimated coefficients in the state process, we can calculate the
transition intensity matrix Q for different covariate values, from which in
turn we derive the expected durations within each state presented in Ta-
ble 2. The results show that the reference group of female patients with
moderate comorbidities and age 49 at initial diagnosis is expected to spend
roughly 48 days in state 1 compared to 94 days in state 2. In contrast, male
patients with otherwise the same characteristics spend considerably more
time in the low disease level (i.e. 81 days more in state 2, on average), while

TABLE 2. Expected duration (in days) in each state with 95% confidence inter-
vals, which were obtained using Monte Carlo simulation. The reference group are
female patients with moderate ACCI and age 49 at initial diagnosis.

group state 1 state 2
reference group 48.2 [45; 51.7] 94.2 [88.3; 100.3]
male 49.1 [44.7; 54.3] 175.1 [158.4; 194.4]
mild ACCI 53.5 [47.3; 60.6] 148.3 [131.7; 167.8]
min. age: 21 61.3 [52.0; 72.7] 77.0 [65.9; 90.1]
max. age: 69 40.7 [36.2; 45.7] 108.4 [96.9; 121.4]
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FIGURE 1. Example DDD sequence (upper plot) and step function of the num-
ber of physician consultations over time (lower plot) for one patient, coloured
according to the local state probabilities of the high disease level (i.e. state 1).

a similar pattern is found for mild in contrast to moderate comorbidities.
Concerning age at diagnosis, younger persons spend both more time in
state 1 and less time in state 2 compared to the reference group, which is
reversed in older age. This effect, however, is caused by a selection bias due
to our use of the age-adjusted comorbidity index.
Based on the fitted MMMPP, we can decode the patients’ latent state
sequences, which provide insight into the individual course of a disease. The
local state probabilities, which are calculated using the forward-backward
algorithm, allow us to further quantify uncertainty in the decoded state
sequences (see Figure 1). In particular, uncertainty in state allocation is
to be expected, as the state-dependent distributions of the observation
process and the mark process overlap substantially (cf. Table 1), reflecting
that disease dynamics within the data are less distinct. Nevertheless, the
model appears to adequately distinguish (qualitatively) different periods of
healthcare utilisation and drug use, while taking into account the temporal
dependence structure of the data.

4 Discussion

As illustrated in the case study, MMMPPs can detect distinct patterns of
healthcare utilisation related to disease processes and reveal inter-individual
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differences in the state-switching dynamics. In particular, their flexible
model structure offers manifold possibilities to analyse claims data;
MMMPPs not only operate in continuous time and allow for (potentially
multivariate) observations consisting of various data types but can also in-
clude covariate effects on the disease dynamics, the event rates, or the mark
distributions. By jointly modelling observations and their informative time
points, the continuous-time latent-state approach of MMMPPs thus offers
a natural framework to analyse the evolution of patients’ disease activity
underlying claims data.
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Abstract: One in three women worldwide experience physical or sexual violence,
mostly by an intimate partner. Despite the large number of complaints, it is
suspected that they represent only a small portion of the cases occurring, as for
very different reasons, the victims often decide not to report the assaults they
suffer. In this work, the number of weekly diagnoses related to gender-based
violence registered in the Primary Care system in one of the largest areas in
Catalonia (Spain) is analysed, estimating its underreporting and considering the
different behavior of the phenomenon due to the Covid-19 mitigation measures
undertaken by the Spanish government and the impact of a training activity
to sensibilize practitioners conducted in late 2019 in the considered area. The
proposed methodology is also capable of reconstructing the most likely evolution
of the process.
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1 Introduction

According to the United Nations, gender-based violence (GBV) refers to
harmful acts directed at an individual based on their gender. It is rooted in
gender inequality, and might adopt different forms: physical, sexual, emo-
tional, financial or structural, and the victim can require medical assistance
after an episode of GBV or not. In this work, we will focus on GBV cases in
which the victims required assistance from the public health primary care
system in one of the most populated areas in Catalonia, Spain.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).



226 Estimating what is under the tip of gender-based violence

Despite the large number of complaints, it is suspected that they represent
only a small portion of the cases occurring, as for very different reasons, the
victims often decide not to report the assaults they suffer. As reported in
the document on tackling sexual violence in Catalonia (Toledo-Vásquez and
Pineda-Lorenzo, 2016), being a victim of sexual violence is often fraught
with guilt that can lead to denial of sexual violence. Therefore, it is reason-
able to think that the number of diagnoses related to gender-based violence
recorded in the public health system databases may be underestimating the
magnitude of the problem (Fernández-Fontelo et al., 2019).

2 Methods

2.1 Data

The proposed approach is used to reconstruct the most likely evolution of
the weekly number of confirmed diagnoses of GBV from January 2010 to
December 2021 in the North Metropolitan Health area (Catalonia, Spain).
This area is divided in 6 subareas (25, 26, 27, 31, 34 and 35), each one with
a particular behavior.
It is known that the outbreak of the Covid-19 pandemic and the measures
undertaken by governments to deal with it (as mandatory home confine-
ments) resulted in an increase in the cases of GBV in many countries,
also in Spain (Rodriguez-Jimenez et al., 2021). Additionally, by late 2019
a training activity was carried out by the catalan Department of Health in
order to sensibilize practitioners with the issue, which is expected to reduce
the underreporting of cases.
In Spain, the official statistic to measure the prevalence of GBV is the vio-
lence against women Macro Survey (done every 4 years). The 2019 Macro
Survey’s main objective was to find out the percentage of women aged 16
or over residing in Spain who have suffered GBV (Delegación del Gobierno
contra la Violencia de Género, 2019). This type of surveys give us a more
realistic idea of the number of GBV in Spain whether they have been re-
ported or not. Given that the interview is anonymous, the social stigma
and lack of access to resources and support systems are not an obstacle to
have a better aproximation of the actual magnitude of the issue.

2.2 Model

Let’s assume that the actual weekly number of GBV cases Xt follows a
Poisson distribution with mean λ, which is increased in a factor β in the
mandatory confinement period (2020 March 14th to 2020 June 24th), i.e.,
E(Xt) = λ+I(t) ·β where I(t) takes the value 1 if t falls within the manda-
tory confinement period and 0 otherwise. The evolution of the phenomenon
in each subarea is shown in Figure 1, jointly with the reconstructed most
likely actual process according to Equation 2.
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FIGURE 1. Evolution of the weekly number of gender-based violence diagnoses
in each subarea of the North Metropolitan Health area (Catalonia, Spain) (in
green) and reconstructed most likely process following Eq 2 (in red).

The number of cases diagnosed within the public primary care system, Yt,
is just a part of the actual process, expressed as

Yt =

{
q0 ◦Xt, t ≤ t′

qt ◦Xt, t > t′
(1)

where ◦ is the binomial thinning operator, defined as qt ◦ Xt =
∑Xt

i=1 Zi,
with Zi independent and identically distributed Bernoulli random variables
with probability of success qt and qt = q0 + t−t′

α−t′
(1−q0)

for t > t′, where t′ is

the changing point at which the sensibilization training for primary care
professionals starts impacting the weekly number of diagnoses.
It should also be noted that α is the moment when qα = 1, i.e., the reg-
istered and observed processes coincide. It is important to note that the
number of GBV cases Xt is not directly observed, and only the number of
diagnosed cases Yt is observed. Model (1) assumes that Yt only reports a
fraction qt of the total number of GBV cases. All the parameters (q0, λ,
β, α and t′) are estimated by Gibbs sampling using the R2jags package
(Yu-Sung and Masanao, 2021), using appropriate priors based on the avail-
able information. In order to avoid non-identifyability of the model (1),
the actual average number of GBV cases in each subarea on the non-Covid
period (parameter λ) has a normal prior distribution with mean based on
the expected cases according to the Macro Survey results provided by the
Spanish Minsitry of Equality. It is worth noticing that this is a conserva-
tive approach, as we are assuming that the results of the survey are not
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underestimating the prevalence of GBV cases.
Once the parameters have been estimated, the most likely process can
be reconstructed taking into account that Yi | Xi ∼ Binom(xi, qt). At
each time t with j reported cases, the most likely number of gender-based
violence cases is the value ν that maximizes the probability

f(ν) = P (X = ν | Y = j) ∝ P (Y = j | X = ν) · P (X = ν) =

=

{
0, j > ν(
ν
j

)
· qjt · (1− qt)ν−j ·

e−(λ+I(t)·β)·(λ+I(t)·β)ν
ν! , j ≤ ν

(2)

A thorough simulation study reproducing the described structure with dif-
ferent parameter values has been conducted in order to assess whether the
original values can be recovered by using this estimation method and to
assess the model performance. Preliminary results of this simulation study
are summarized in Section 3.2.

3 Results

3.1 Catalonia Primary Health Care System

Table 1 summarizes the parameter estimates in each subarea. It can be seen
that the underreporting at the beggining of the period is severe (q0 ranging
from 0.05 to 0.14), and that the impact of the training for professionals
contributes in reducing the underreporting from early dates, so the actual
number of cases is being registered between 2022-03-04 (subarea 25 and
26) and 2022-05-13 (subarea 27).

TABLE 1. Parameter estimates (posterior median and 95% credible interval) for
each subarea.

q0 λ β α t′

25 0.08 (0.07, 0.1) 2.31 (2.19, 2.55) 3.34 (1.34, 5.9) 636 (636, 640) 520 (517, 522)
26 0.09 (0.07, 0.11) 2.57 (2.39, 2.74) 3.73 (1.81, 6.15) 636 (636, 639) 503 (499, 506)
27 0.09 (0.06, 0.12) 1.19 (1.03, 1.36) 1.44 (0.4, 3.07) 643 (636, 671) 507 (482, 516)
31 0.14 (0.11, 0.16) 4.27 (4.08, 4.45) 4.12 (1.91, 6.78) 637 (636, 640) 500 (494, 506)
34 0.12 (0.09, 0.16) 1.47 (1.31, 1.64) 2.95 (1.37, 5.02) 637 (636, 643) 501 (495, 509)
35 0.05 (0.04, 0.06) 5.21 (5.02, 5.39) 2.73 (0.78, 5.45) 637 (636, 640) 503 (495, 510)

In all cases we have run 5 MCMC chains and 50,000 iterations, and con-
vergence is reached for all parameters while not having any patterns in
the trace plots. Figure 2 correspond to subarea 27 for illustration, but the
behavior is consistent for all subareas.
In addition, the Potential Scale Reduction Factor corresponding to all pa-
rameters in all subareas were below 1.01, also indicating acceptable con-
vergence of the chains.
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FIGURE 2. MCMC diagnostics: Convergence and posterior density functions for
subarea 27.

3.2 Preliminary performance results

In order to assess the performance of the model (1), a simulation study has
been conducted. The theoretical values for the parameter q0 ranged from
0.1 to 0.9; α = 1200, 1500, 2000; β = 0.5, 2, 5; λ = 5, 7, 10; t′ = 100, 500, 900.
For each parameters combination, 100 random samples of size n=1000 have
been generated. Average relative bias, average interval length (AIL) and
average 95% credible interval coverage are shown in Table 2. To summarize
model robustness, these values are averaged over all combinations of pa-
rameters, considering their prior distribution is a Dirac’s delta with all
probability concentrated in the corresponding parameter value. Due to
computational burden, only partial results can be provided here.

TABLE 2. Model performance measures (average relative bias, average interval
length (AIL) and average coverage) summary based on a simulation study

Parameter Bias (%) AIL Coverage (%)

α 4.14 1656 86.2
β 0.006 3.95 96.6
t′ 0.61 436 98.1
λ 0.001 0.38 87.7
q0 0.0001 0.07 90.8

As shown in Table 2, the model behaves as expected. In general, 95%
credible intervals coverage is reasonable, even with relatively thin intervals
and low relative bias.
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Abstract: Radiation dose estimation is a topic that is constantly looking for
new methodological and applied solutions. Accurate dose estimation is essential
for minimizing the health risks associated with exposure to ionizing radiation.
Over the years, various biomarkers have been used for radiation dose estimation,
including chromosome aberrations in peripheral blood lymphocytes. Instead of
using only one blood cell-based biomarker, we suggest a novel approach that
makes use of two biomarkers: dicentrics and chromosomal translocations. One of
the statistical methods that enables us to fit two correlated count variables, as is
the case, is the bivariate Poisson regression model. By combining these two types
of chromosomal aberrations in a bivariate model, we can potentially overcome
the limitations of each biomarker and improve the accuracy of radiation dose
estimation.

Keywords: biological dosimetry; chromosomal translocations; dicentrics.

1 Introduction

Nowadays, nuclear technology is widely employed around the world, partic-
ularly in the fields of industry, medicine, and energy production. Uninten-
tional radiation exposure unfortunately occurs sometimes despite rigorous
restrictions and safety precautions. It is necessary to assess the radiation
dose that the exposed person has absorbed in order to give them the best
and most immediate medical care. This need will be much more urgent in
the event of a large-scale disaster involving hundreds of individuals. Then

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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the key would be to identify persons who need immediate care, i.e. the so-
called triage. Estimating the radiation dose is the aim of the field known
as biological dosimetry.
Biodosimetry is based on the quantification of the magnitude of radiation
damage at the cellular level, that is chromosomal aberrations, which fre-
quency is used in statistical models to estimate a radiation dose (of an
exposed person). Dicentrics, chromosomes with two centromeres, are the
most studied chromosomal abnormalities. Translocations, which involve the
swapping of two chromosomal fragments, are a labor-intensive method that
is rarely performed. However, dicentrics are also observed when transloca-
tions are detected by fluorescence in situ hybridization (FISH) assay, hence
we provide mathematical models that enable their simultaneous usage.
In biodosimetry, linear and quadratic models of radiation dose are usually
investigated. For paired count data relating to dicentrics and translocation
information, bivariate Poisson regression models may be a good choice.
Examples of applications for these types of regression models include the
analysis of healthcare data, insurance ratemaking, or football games (Karlis
& Ntzoufras, 2003). Although, as far as we know, no studies have employed
a bivariate model to estimate radiation doses in biodosimetry.

2 Model

Let denote by Xj and Yj the number of dicentrics and translocations in j-th
cell, j = 1, . . . ,M . Then assume that Xj and Yj follow jointly a bivariate
Poisson distribution, BP (λ1j , λ2j , λ3j), with probability function

P(Xj ,Yj)(xj , yj) = exp(−(λ1j + λ2j + λ3j))
λ
xj

1j

xj !

λ
yj
2j

yj !

×
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(
xj
k

)(
yj
k

)
k!(

λ3j
λ1jλ2j

)k, xj , yj = 0, 1, 2, . . . ,

where λij > 0, i = 1, 2, 3, E(Xj) = λ1j + λ3j and E(Yj) = λ2j + λ3j .
Then λ1j , λ2j , λ3j can be modelled using some regressors. We will examine
two models, linear and quadratic, that include the radiation dose as a
covariate, which are typical in the field of biodosimetry (see IAEA, 2011
and M lynarczyk et al., 2022). In the case of a quadratic model we have

λ1j = β11 + β12 · dosej + β13 · dose2j ,
λ2j = β21 + β22 · dosej + β23 · dose2j ,
λ3j = β31,

(1)

where dosej denotes the radiation dose received by j-th cell, βkq denotes
the corresponding regression coefficients, for k = 1, 2, q = 1, 2, 3. Moreover,
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λ3j is the covariance between the two random variables Xj and Yj . The
model is completely linear when β13 and β23 are fixed to zero.
Typically, these types of models are used to estimate the radiation dose
of a potentially exposed person. Assuming that we are now analyzing a
new blood sample from an irradiated patient, this implies that there are
new observations of Xj dicentrics and Yj translocations in cells j = M +
1, . . . , N . In contrast to the data for j = 1, . . . ,M for which the doses are
known, the dose received by the patient is unknown and will be denoted
by D. The main goal is to estimate the dose based on the observed data.
Since we are working within Bayesian framework, the interest is in finding
the posterior distribution for the model

π(β,D | (x,y)) ∝ π((x,y) | β,D)π(D,β),

where β = (β11, . . . , β31) and x = (x1, . . . , xN ), y = (x1, . . . , xN ). The
likelihood is given by

π((x,y) | β,D) =

N∏
j=1

exp(−(λ1j + λ2j + λ3j))
λ
xj
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λ
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×
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)k,

where λij are defined as in (1) for j = 1, . . . , N .
We need to specify a prior distribution π(D,β). We assume a prior inde-
pendence between dose and regression coefficients so π(D,β) = π(D)π(β).
For π(β) we opt for non-informative uniform priors on a positive interval
because that λij is positive. Prior for dose, π(D), should be chosen with
some knowledge of the radiation accident and the patient’s symptoms. If
such information is not available, it is possible to consider a uniform distri-
bution on the interval corresponding to the range of doses in the dataset,
as was done in this study.
Marcov chain Monte Carlo (MCMC) methods can be used to approximate
the posterior distribution. In particular, using Gibbs sampling method,
the samples from π(β,D | (x,y)) are constructed from the conditional
posterior distribution of each element in (D,β) given the rest of them.
The full conditional distributions can be clearly defined in this case. For
instance, the conditional distribution for β12 is given by

π(β12 | β−12,D, (x,y)) ∝ π(β12) ·
N∏
j=1

exp(−λ1j)λ
xj

1j

×
min(xj ,yj)∑

k=0

1

k!(xj − k)!(yj − k)!
(
λ3j

λ1jλ2j
)k,
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where β−12 = (β11, β13, β21, β22, β23, β31), and π(β12) is the prior distribu-
tion for β12. Identically, other conditional distributions can be defined for
the rest of the β parameters. Since the primary objective is to estimate
the dose D, the posterior marginal distribution π(D | (x,y)) is the main
interest. It can be obtained by integrating the posterior density over β,

π(D | (x,y)) =

∫
π(β,D | (x,y))dβ.

The most likely range of dose received by the patient, can then be deter-
mined looking at the 95% credible interval.

3 Data & Results

In this study we apply the bivariate Poisson model to data from Finnon et
al. (1999). The blood sample, from a healthy 31-year-old male, was exposed
to γ-rays in a laboratory at radiation doses ranging from 0.25 to 4 Gy. Then
the samples were painted according to the FISH protocol, which allows the
detection of bicoloured dicentrics and translocations in chromosomes. The
number of scored cells varies for different doses from 200 to 2000. For lower
doses the sample mean of the number of dicentrics and of tranlocations
is much lower (0.01 for dose 0.25 Gy for both aberrations types) than for
dose 4 Gy (0.27 for dicentrics and 0.37 for translocations). Table 1 displays
details regarding the data.

TABLE 1. Number of cells, mean of dicentrics and mean of translocations for
different doses. The dose 2 Gy was chosen as test data.

Dose (Gy) 0.25 0.50 0.75 1.00 2.00 3.00 4.00

Number of cells 2000 1000 1000 1001 500 299 200
Mean of dicentrics 0.01 0.01 0.02 0.02 0.10 0.19 0.27
Mean of translocations 0.01 0.01 0.02 0.02 0.11 0.22 0.37

The frequency of aberrations for dose 2 Gy was chosen as test data to check
the performance of the model (i.e. it was irradiated in the same conditions
as calibration data, but it was not included in the calibration part of the
model). The mean number of dicentrics found in this sample was 0.1 and
translocations 0.106.
Figure 1 provides a graphic representation of the result for both estimate
linear and quadratic models. The curves have been constructed using the
mean values of the posterior distribution of the parameters βkq for k =
1, 2, q = 1, 2, 3. The marginal posterior dose density of both models can be
seen in the Figure 2. The quadratic model estimates the mean value of dose
2.186 Gy, and the 95% credible interval is between 2.088 Gy and 2.28 Gy.
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FIGURE 1. Result of the linear (dotdash line) and quadratic (solid line) model.
The red lines represent the curves for dicentrics and the blue ones for transloca-
tions with regard the dosis received. The points are the actual values of yield of
dicentrics and translocations that were used to fit the model.

0

1

2

1.5 2.0 2.5 3.0 3.5
Dose (Gy)

D
en

si
ty

Model

Linear

Quadratic

FIGURE 2. Marginal posterior dose density given by linear and quadratic model.

On the other hand, the linear model produces a mean estimate of 2.486 Gy,
with the 95% credible interval of 2.286 Gy to 2.674 Gy. Thus the quadratic
model gives better estimation, although it overestimates the real dose. This
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is most likely a result of the limited calibration data that are available; the
more calibration data used, the more accurate the estimation could be.
The advantage of the proposed model is that it may be simply expanded to
add other covariates (such as age, sex, etc.) that may affect the frequency of
dicentrics or translocations. The model may also be employed in scenarios
involving partial body exposure, but further research is needed.

Acknowledgments: Special Thanks to Cytogenetics Group from UK Health
Security Agency for explaining all biological details of the assays.
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Abstract: In this work, we propose a direct spatio-temporal extension of the
spatial conditional overdispersion models, where we include the spatial lag of the
response variable for each time unit in the linear predictor. The proposed models
are able to capture both spatial and temporal correlations that may be present
in the data under study. In addition, we also propose temporally varying spatial
lag coefficient models, which allow us to study the variation in time of the spatial
term. In order to illustrate their performance, we apply our proposals, for Poisson
distributed responses, to the Glasgow respiratory hospital admissions data set,
where we compare their performance with the widely used Knorr-Held’s models.

Keywords: Bayesian models; Overdispersion; Spatio-temporal models.

1 Introduction

Spatio-temporal data arise in many fields of study, since researchers are
often interested in studying a phenomenon observed in several locations
and time periods. This type of data often exhibit correlation among regions
and time units that need to be taken into account when fitting regression
models. The spatial conditional overdispersion models were proposed by
Cepeda-Cuervo et al. (2018) to fit spatial count data, as they are able
to take overdispersion into account, and also model the possible existing
spatial dependence by including the spatial lag of the response variable
under study in the regression structure for the mean (see also Morales-
Otero and Núñez-Antón, 2021). In this work, we propose some extensions
of these models to allow for the modelling of spatio-temporal count data.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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2 Methods

One of the most frequently used models for fitting spatio-temporal data was
proposed by Knorr-Held (2000). In this model, it is assumed that the ran-
dom variables Yij represent counts for i = 1, . . . , n regions in j = 1, . . . , J
time periods. It is also assumed that Yij , conditioned on the random effects
νi, ηi, δj , ϕj and ϵij , follows a Poisson distribution with means µij ; that is
(Yij |νi, δj , ϕj , ϵij) ∼ Poi(µij), with regression structure given by:

log(µij) = xT

ijβ + νi + ηi + δj + ϕj + ϵij , (1)

where xij is the k×1 vector of explanatory variables for the i-th area in the
j-th time period, and β is the k×1 vector of unknown regression parameters
that needs to be estimated. In addition, νi and δj are unstructured random
effects for space and time (i.e., νi ∼ N(0, τν), τν > 0, and δj ∼ N(0, τδ),
τδ > 0), respectively, ηi is a spatially structured random effect following an
intrinsic conditionally autoregressive (ICAR) distribution and ϕj is a tem-
poral effect, following either a random walk or an autoregressive process.
Finally, ϵij is a spatio-temporal interaction term for which an unstructured
normal prior distribution (i.e. ϵij ∼ N(0, τϵ), τϵ > 0) is often assumed.
We propose an extension of the spatial conditional models that includes,
for each time period, the lag term of the response variable under study.
The parameter associated to this term would represent the strength of the
global spatial autocorrelation that can be present in the data. In this sense,
positive significant values would suggest positive spatial autocorrelation in
the whole time period considered, and negative significant values, negative
spatial autocorrelation. In particular, we assume that, for each time period
j, the response variables Yij , conditioned on the values of all the neighbours
of the i-th region, but not including the i-th region itself (i.e., Y∼ij), and
on the random effects νi, δj , ϕj and ϵij , follow a Poisson distribution; that
is (Yij |Y∼ij , νi, δj , ϕj , ϵij) ∼ Poi(µij). Here, the conditional means µij , for
i = 1, . . . , n and j = 1, . . . , J , follow the regression structure:

log(µij) = xT

ijβ + ρWiyj + νi + δj + ϕj + ϵij , (2)

where Wi is the i-th row of the n×n spatial weights matrix W modelling
the spatial dependence, yj is the n×1 vector of observations for all n spatial
units for time period j, ρ is the parameter that captures the strength of
the spatial association, and xij , β, νi, δj , ϕj and ϵij are as before.
Finally, we also propose the temporally varying spatial lag coefficient model
where, in equation (2), we assume that the coefficient for the spatial lag is
the sum of a fixed coefficient, ρ0, and a random coefficient, ρj , that varies
according to the time units j = 1, . . . , J . More specifically, we propose
different specifications for the temporal varying coefficient, such as an un-
structured normal distribution, a random walk process or an autoregressive
process. The estimated value obtained for ρ0 would represent the strength
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of the spatial dependence among the regions for the whole time period
under study, whereas the estimated values obtained for ρj would indicate
whether the spatial association increases or decreases with time. This would
allow us to examine the variability of the coefficient of the spatial lag from
one time unit with regard to the others. Taking into account the value ob-
tained for ρ0, a positive estimated value of ρj would suggest that for time
period j, the strength of the spatial association is larger than that indi-
cated by ρ0, and a negative estimated value of ρj would indicate that, for
the j-th time period, the spatial autocorrelation is weaker. If ρ̂j ≈ 0, this
would mean that there are no significant changes in the spatial correlation
pattern for the j-th time period, with respect to that of ρ0.

3 Application

We study a data set to assess the impact of air pollution on the respiratory
health of the population living in each of the n = 271 regions or statisti-
cal sectors belonging to the Scotland National Health System’s board of
Greater Glasgow and the Clyde Valley, Scotland, for a time period of J = 5
years (i.e., from 2007 to 2011) (Lee et al., 2018). The variables available
for each region and time period are the observed number of respiratory
hospital admissions (i.e., variable Y ), the expected number of respiratory
hospital admissions (i.e., variable E), the yearly average modelled concen-
trations of particulate matter less than 10 microns (i.e., variable PM10),
the average property price in each region and year (i.e., variable Price),
and the proportion of the working age population who are in receipt of
job seekers allowance (i.e., variable JSA). In addition, we can obtain the
standardized incidence ratio (SIR) for each region and time period so that
SIRij = Yij/Eij , for i = 1, . . . , n and j = 1, . . . , J .
We have fitted the spatio-temporal model proposed by Knorr-Held (2000)
in equation (1), where we assume that (Yij |νi, ηi, δj , ϕj , ϵij) ∼ Poi(µij),
with means µij = Eijθij , for i = 1, . . . , n and j = 1, . . . , J , following the
regression structure:

log(µij) = log(Eij) + β0 + β1JSAij + β2Priceij + β3PM10ij

+ νi + ηi + δj + ϕj + ϵij
(3)

In addition, we have also fitted our proposed spatio-temporal conditional
model in equation (2), where we include the spatial lags of the SIR’s in the
regression structure for the conditional means. Therefore, we assume that
(Yij |Y∼ij , νi, δj , ϕj , ϵij) ∼ Poi(µij), for i = 1, . . . , n and j = 1, . . . , J , with
means µij = Eijθij following the regression structure:

log(µij) = log(Eij) + β0 + β1JSAij + β2Priceij + β3PM10ij

+ ρWiSIRj + νi + δj + ϕj + ϵij ,
(4)
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where Wi is the i-th row of the spatial weights matrix and SIRj is the
vector of observations of the SIR’s for the j-th time period. In addition, the
random effects νi, δj , ϕj and ϵij are as before. Results obtained after fitting
the models in equations (3) and (4) to the respiratory hospital admissions
in Glasgow data are reported in Table 1.
The variables PM10, JSA and Price are statistically significant in both
models, results that are consistent with the ones obtained by Lee et al.
(2018). In addition, for the spatio-temporal conditional model, the spatial
term is statistically significant and its coefficient has a positive value, indi-
cating the presence of positive spatial autocorrelation in the data, which is
being properly captured by this term. Furthermore, the smallest informa-
tion criteria values are given for our proposed spatio-temporal conditional
model, a fact that suggests, for this specific case, a better fit for this model
over the Knorr-Held model.

TABLE 1. Results obtained after fitting the Knorr-Held and the spatio-temporal
conditional models to the respiratory hospital admissions in Glasgow data.

Knorr-Held Spatio-temporal conditional

Mean SD CI Mean SD CI

β0 -0.441 (0.102) (-0.642,-0.240) -0.800 (0.083) (-0.964,-0.636)
PM10 0.019 (0.007) (0.004,0.033) 0.017 (0.006) (0.006,0.028)
JSA 0.057 (0.006) (0.046,0.068) 0.052 (0.005) (0.042,0.062)
Price -0.187 (0.023) (-0.233,-0.141) -0.182 (0.021) (-0.222,-0.141)
ρ - - - 0.463 (0.048) (0.368,0.557)
τν 0.015 (0.004) (0.008,0.025) 0.025 (0.003) (0.020,0.031)
τη 0.052 (0.018) (0.025,0.094) - - -
τδ 0.003 (0.010) (-1.48e-04,0.021) 0.002 (0.009) (2.91e-05,0.015)
τϕ 0.008 (0.009) (5.72e-04,0.031) 0.007 (0.009) (6.280e-04,0.029)
τϵ 0.011 (0.001) (0.009,0.014) 0.011 (0.001) (0.009,0.013)

DIC = 10389, WAIC = 10352 DIC = 10373, WAIC = 10343

We have also fitted the proposed spatio-temporal varying spatial lag coeffi-
cient models to these data. In particular, we assume (Yij |Y∼ij , νi, ϵij) ∼
Poi(µij), for i = 1, . . . , n and j = 1, . . . , J . For the means µij , with
µij = Eijθij , we specify the following regression structure:

log(µij) = log(Eij) + β0 + β1JSAij + β2Priceij + β3PM10ij

+ (ρ0 + ρj)WiSIRj + νi + δj + ϵij ,
(5)

where we assume that ρj ∼ N(0, τρ), τρ > 0, νi ∼ N(0, τν), τν > 0,
δj ∼ N(0, τδ), τδ > 0, ϵij ∼ N(0, τϵ), τϵ > 0, and the rest of the terms are
as before. We have fitted the reduced versions of this model, obtaining the
best fit for the one that does not include the temporal random effect δj .
This model takes into account the temporal correlation only by means of the
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random coefficient ρj for the spatial lag. Results obtained after fitting this
model to the respiratory hospital admissions in Glasgow data are reported
in Table 2. Here, the spatial coefficient is also positive and statistically
significant, capturing the positive spatial autocorrelation present in the
whole time period. In addition, the red line in Figure 1 represents the
estimated mean obtained for ρj , according to the year, and the green bands
correspond to its 95% credible interval. Here, we can see how the effect of
the spatial lag over the response, which is the number of respiratory hospital
admissions, changes with time. In particular, in this case the estimated
mean of ρj has the largest value for the year 2008 and then, it decreases
from that year on. This suggests that in this year is where the strongest
spatial autocorrelation is found in the data and, that it becomes weaker
for the following years. Only for the year 2009, the effect is nearly zero,
meaning that in this year, the spatial dependence is well explained by the
fixed parameter ρ0.

TABLE 2. Results obtained after fitting the temporally varying spatial lag co-
efficient model in equation (5) to the respiratory hospital admissions in Glasgow
data.

Mean SD CI

β0 -0.809 (0.081) (-0.968,-0.651)
PM10 0.018 (0.006) (0.007,0.030)
JSA 0.056 (0.005) (0.045,0.066)
Price -0.180 (0.021) (-0.221,-0.139)
ρ0 0.430 (0.049) (0.335,0.526)
τρ 0.011 (0.010) (0.002,0.038)
τν 0.024 (0.003) (0.019,0.030)
τϵ 0.011 (0.001) (0.009,0.013)

DIC = 10371, WAIC = 10342

4 Conclusions

We have proposed extensions of the spatial conditional overdispersion mod-
els for fitting spatio-temporal count data. We have illustrated their useful-
ness in the study of the respiratory hospital admissions in Glasgow. We have
compared our results with those obtained from the fitting of the Knorr-Held
model, resulting in a better fit in terms of information criteria and estimates
for our proposed models, with the spatial lag coefficient being statistically
significant for all the models considered. Moreover, it has a positive value,
indicating that this term is properly capturing the positive spatial autocor-
relation present in the data. We have also fitted our proposed temporally
varying spatial lag coefficient model to these data, which allowed us to ex-
amine the temporal variation of the spatial correlation and to identify the
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FIGURE 1. Temporal variation of the spatial autoregressive parameter.

year 2008 as the one where the spatial autocorrelation in the data was the
strongest.
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Abstract: In hidden Markov models (HMMs), the selection of an adequate num-
ber of states — also referred to as order selection — is commonly made based
on information criteria, despite well-known problems and pitfalls. We explore an
alternative approach to order selection in HMMs, considering a penalised likeli-
hood comprising a group lasso penalty on the entries of the transition probability
matrix. The feasibility of the approach is demonstrated in a real-data case study
on financial share returns, where we compare the predictive performance of the
HMMs fitted using the lasso penalty with the common benchmarks.

Keywords: financial time series; group lasso; maximum penalised likelihood;
model selection.

1 Introduction

Hidden Markov models (HMMs) are flexible tools for modelling time series
driven by underlying states. More specifically, in an HMM, each observation
is assumed to be generated by a distribution selected by an underlying
latent state. The state process is modelled as a finite-state Markov chain
in discrete time, and could for example represent the states of the economy
(growth vs. recession; Hamilton, 2008) or the volatility level of a financial
market (high vs. low volatility; De Angelis & Paas, 2013).
To select the number of states of an HMM, information criteria such as the
AIC or the BIC are often used. However, these are known to often favour
models with an unreasonably large number of states, which can be unde-
sirable for example when the states shall be interpretable entities (Pohle
et al., 2017). Here we explore an alternative approach using a lasso-type
penalty on the state-switching probabilities, thereby reducing the number

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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of states whenever this is supported by the data. In a case study consider-
ing daily share returns, we compare the performance of the new approach
to the common benchmarks, i.e. order selection based on AIC or BIC.

2 Methods

In an HMM, the observations y1, . . . , yT are driven by an unobserved state
process s1, . . . , sT , modelled as an N -state Markov chain, in the sense that
each yt is generated by one of N distributions as selected by the state
st. The state transitions are governed by the transition probability matrix
(t.p.m.) Γ = (γij), with γij = Pr(st = j | st−1 = i). Assuming the Markov
chain starts in its stationary distribution δ, the likelihood of the HMM is

L(θ) = δP(y1)ΓP(y2) . . .ΓP(yT )1 ,

with P(yt) anN×N diagonal matrix with the state-dependent probabilities
(or densities) f(yt | st = i), i = 1, . . . , N , on the diagonal, column vector
1 = (1, . . . , 1)T ∈ RN , and with θ collecting all unknown model parameters
(see Zucchini et al., 2016).
The number of states N is typically chosen before model fitting, then com-
paring several fitted models (e.g. with N = 2, 3, 4, 5) via information cri-
teria. However, it is well-known that information criteria in many settings
tend to favour models with larger numbers of states than seem adequate
given the subject matter (Pohle et al., 2017). This can be explained by the
possibility to use extra states for compensating any relevant structure not
accounted for in the model formulation (e.g. when using Gaussian state-
dependent distributions despite a heavy-tailed empirical distribution, or
assuming a first-order Markov chain despite higher-order dependence in
the data). Indeed, to date there is no formal approach to order selection
in HMMs that would yield reliable results in practice, such that empirical
research instead resorts to pragmatism when choosing N .
Without claiming to fill this gap, we here explore a completely novel ap-
proach to order selection, which may have some advantages over informa-
tion criteria. Specifically, we propose a penalised likelihood approach based
on the group lasso penalty to shrink the entries of the t.p.m., thereby
allowing for an automatic data-driven reduction in the number of states
whenever adequate. In particular, we consider the penalised log-likelihood

ℓpen(θ) = log
(
L(θ)

)
− λ

N∑
j=2

∥Γ·,j∥2,

with the L2 norm ∥·∥2 and with Γ·,j the j-th column of the t.p.m. Γ.
The tuning parameter λ > 0 governs the amount of penalisation: for λ →
∞, the vector Γ̂·,j will be zero (Hastie et al., 2015), thus leading to the

disappearance of state j. If instead some elements of Γ̂·,j are nonzero, then
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state j is selected into the model. The first column is not penalised since the
row sums of the t.p.m. must be one, such that we cannot shrink all elements
to zero. The simplest model thus would be a 1-state HMM, where the first
column of the t.p.m. contains only ones and the remaining elements of the
t.p.m. are all zero. To select the tuning parameter λ, we consult either the
AIC or the BIC, where the number of non-zero parameters is used as a
proxy of the effective degrees of freedom.

3 Application

To demonstrate the feasibility of the proposed approach, we consider an
application in finance, specifically the prediction of share returns. We con-
sider the daily adjusted closing prices pt of four stocks from the German
stock market index DAX, Bayer, BMW, Deutsche Bank (DB), and Volk-
swagen (VW), downloaded from finance.yahoo.com. We model the time
series of daily log-returns, given by yt = log(pt/pt−1). Figure 1 shows the
time series of DB’s daily returns, indicating that in the time window con-
sidered, there were some periods with more volatile trading (for example
during the European debt crisis in the early 2010s), but also such where
the market was relatively calm (e.g. around 2014).
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FIGURE 1. Deutsche Bank (log-)returns from January 2010 until December
2022.

We split our data into a training (Jan 2010 – Dec 2019, 2515 observations)
and a test set (Jan 2020 – Dec 2022, 760 observations). We fit HMMs
with 2 − 8 states to the training data, using AIC and BIC to select the
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optimal N . These are the benchmarks for the new approach using group
lasso penalisation. The different models are compared in terms of their
predictive performance on the test set, as measured by the out-of-sample
likelihood.
For the four stocks considered, Table 1 lists the number of states preferred
by the different approaches and the out-of-sample (log-)likelihood values.
The results are inconclusive but indicate that the group lasso could improve
the forecast performance (at least on average).

TABLE 1. Out-of-sample (log-)likelihood values on the test data for the four
stocks considered, with bold values indicating the maximum. Values in parenthe-
ses show the number of states preferred by the respective approach.

Bayer BMW DB VW

AIC 1949 (5) 1916 (5) 1641 (5) 1757 (4)
BIC 1956 (3) 1859 (3) 1642 (3) 1757 (4)
Lasso (λ selected via AIC) 1983 (4) 1922 (5) 1648 (4) 1728 (4)
Lasso (λ selected via BIC) 1983 (4) 1893 (3) 1629 (3) 1728 (4)

4 Outlook
Current research focuses on simulation experiments to further investigate
the proposed approach’s properties and potential (dis)advantages com-
pared to selecting the number of states via information criteria. In addition,
we implement further out-of-sample criteria for evaluating the predictive
performance in financial applications, e.g. considering the value at risk.
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Abstract: In the frequentist framework, pseudo-observations analysis offers an
alternative to the Cox proportional hazard model and is particularly interest-
ing for complex survival modeling (multi-state model, recurrent events, interval
censored data). Its advantage lies in its ability to break free from the complex-
ity of censored data modeling using Generalized Estimating Equations (GEE).
Yet Bayesian analysis of pseudo-observations may offer an alternative to the
Bayesian survival analysis, which faces complexity either using non-parametric
methods or full parametric Bayesian models depending on the baseline hazard
assumption. Using pseudo-observations may result in a more straightforward for-
mulation of the Bayesian model without making additional assumptions on the
baseline hazard. This paper extends the analysis of pseudo-observations to the
Bayesian framework using the Bayesian generalized method of moments. Simi-
larly to the frequentist framework, this new approach gave valid estimates with
similar performances compared to the Cox, GEE, and piecewise exponential mod-
els with large sample sizes. This approach may benefit other complex Bayesian
survival models where censoring causes a substantial computational burden.

Keywords: Bayesian analysis; Survival analysis; Pseudo-observations; General-
ized estimating equations; Generalized method of moments.

1 Methods

Pseudo-observations, defined in Andersen et al. (2003), may be used as an
alternative approach to the Cox model and, more generally, in complex sur-
vival modeling, such as multi-states models. The K pseudo-observations of

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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the i-th individual are defined as Yik = nŜ(tk)− (n− 1)Ŝ−i(tk) with n the

sample size, Ŝ(t) the Kaplan-Meier estimator of the survival probability at

time t and Ŝ−i(t) the Kaplan-Meier estimator after excluding i-th individ-
ual. In practice, K = 5 time points equally spaced on the event time scale
are sufficient to capture all the information from the Kaplan-Meier curve,
see e.g. Klein et al. (2014).

Pseudo-observations are analyzed as an outcome variable in a regression
model using generalized estimated equations, defined by Liang and Zeger
(1986). This marginal approach is based on quasi-likelihood functions where
only the moments are defined.
Suppose Xi = (Xi1, ..., XiK)T, yi = (yi1, ..., yiK)T and µi = (µi1, ..., µiK)T

the covariates matrix, outcome vector, and mean vector for the i-th indi-
vidual. β = (β1, ..., βP )T is the vector of parameters to estimate. The mean
model is defined as η(µik) = XT

ikβ where η is a monotone differentiable link
function. The marginal variance is assumed to be a function of the mean
var(yik) = ϕv(µik), see e.g. McCullagh et al. (1991).
The βs are estimated by solving the score equations:

Un(β) =
1

n

n∑
i=1

ui(β) =
1

n

n∑
i=1

DT

i V
−1
i (yi − µi) = 0,

where Di = ∂µi/∂β
T and Vi = ϕA

1/2
i R(α)A

1/2
i with

Ai = diag{v(µi1), ..., v(µiK)}. The working correlation matrix R(α) is as-
sumed among specific forms. The nuisance parameters (ϕ, α) are alternately
estimated with the βs, using moment estimations and a modified Fisher
scoring algorithm, see e.g. Liang and Zeger (1986).

Yin (2009) proposed an approach that can be viewed as the Bayesian coun-
terpart of GEE. It relies on the quadratic inference functions given in Qu
et al. (2000). This approach is an extension of GEE, where the inverse of
the working correlation matrix is expressed as a linear combination of ba-
sis matrix, R−1 ≈

∑J
j=1 ajMj . Contrary to GEE, the βs are estimated by

applying the generalized method of moments (GMM), defined by Hansen
(1982). The minimization problem of the generalized method of moments
is equivalent to an MCMC sampling problem, see e.g. Chernozhukov and
Hong (2003). Yin (2009) defined the pseudo-likelihood function as follows:

L̃(y|β) ∝ exp{−1

2
UT

n (β)Σ−1
n (β)Un(β)},

where Σn(β) = 1
n2

∑n
i=1 ui(β)uT

i (β)− 1
nUn(β)UT

n (β),
with Un(β) = 1

n

∑n
i=1 ui(β) and ui(β) a (J × p)-dimensional score vector

written as

ui(β) =


DT
i A

−1/2
i M1A

−1/2
i (yi − µi)

DT
i A

−1/2
i M2A

−1/2
i (yi − µi)

...

DT
i A

−1/2
i MJA

−1/2
i (yi − µi)

 .
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This paper extends the above method by implementing the Bayesian gen-
eralized method of moments to analyze pseudo-observations. We wrote our
model using the Stan software (Carpenter et al., 2017) using a cloglog link
function to interpret the estimates as hazard ratios. The working correla-
tion matrix was assumed independent (R(α) equals the identity matrix),
as is usually the case when applying GEE to pseudo-observations, see e.g.
Klein et al. (2008).

2 Simulation study

2.1 Simulation settings

We performed a simulation study of 2-arm randomized clinical trials with
a time-to-event outcome to assess the performance of the Bayesian general-
ized method of moments model applied to pseudo-observations. Simulated
data were generated with a Weibull and a uniform distribution for event
and censoring times, respectively. For the Bayesian GMM, MCMCs were
performed using the rstan package with 3 chains of each 5000 iterations
after a warm-up of 1000 iterations, thinning of 5, yielding 3000 iterations
overall. Its performance was compared to the Cox model, the GEE model,
and the Bayesian piecewise exponential model. All pseudo-observations-
based models include an intercept, a treatment factor (X1) and K − 1
dummy variables for the time factor (X2, ..., X5). Bias, average standard
error, root-mean-square error, and coverage were calculated from 1000 gen-
erated datasets with different simulation parameters of sample size, actual
treatment effect, and censoring rate.

2.2 Priors elicitation

Convergence issues occur for some simulations when using non-informative
priors βp ∼ N(0, 1000). After some iterations, one of the three chains starts
to diverge either with large variability of estimates or fixed to extreme esti-
mates. One of the reasons may be that, unlike classical likelihood functions,
the pseudo-likelihood is not defined for all values of β, but rather on a re-
stricted support where Σn is invertible, see Figure 1. Convergence issues
seem to occur when parameter values fall outside this local support. The
inverse link function being x→ exp(exp(x)) results in extreme values. Con-
sequently, Σn becomes quickly non-invertible when β values differ strongly
from the actual simulation settings. This convergence issue may be resolved
by truncating the priors of all coefficient regressions (except the one of the
treatment effect) to reasonable values. Another solution is to choose more
appropriate priors for the cloglog scale. Gelman et al. (2008) proposed to
use Cauchy(0, 2.5) as default priors for generalized linear regression models
after centering and re-scaling all the input variables. These weakly infor-
mative priors reflect the fact that large changes on the logit or cloglog scale
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are rare. Using weak Gaussian priors such as N(0, 10) or N(0, 1), recom-
mended by the Stan Development Team (2020), can provide an alternative
to Cauchy priors. They may be more adapted to pseudo-likelihood defined
on small support because they have lighter distribution tails. Finally, in
our simulation settings, weakly informative priors N(0, 10) were specified
for all parameters when applied Bayesian GMM.
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FIGURE 1. Pseudo-likelihood (dashed line) as a function of the last time point
(β5), all the other parameters are fixed to their GEE estimations. Solid lines
represent different priors that have been investigated.

2.3 Results

Table 1 shows a slight bias and a larger variance with the GEE method
compared to the Cox model for n = 500 patients and a 20% censoring
rate. These results are consistent with Andersen et al. (2003). The bias
and variance were larger with Bayesian GMM than with GEE; however,
both decreased when the sample size increased (results not shown). As
illustrated in Figure 2, the trace plots suggest the chains mixed well and
appear to be stationary for the 1000 simulations.

3 Discussion

This paper presents a Bayesian approach based on pseudo-observations as
an alternative to Bayesian survival proportional hazards models. Although
the estimates are less efficient, this approach allows direct hazard ratio
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TABLE 1. Comparison of log hazard ratio estimates between Cox model, GEE
model, piecewise exponential model (PEM), and Bayesian GMM model.

βtrue
1 = −0.5 Frequentist Bayesian

Sample size Cox GEE PEM GMM

n = 500 Bias 0.00089 0.00197 0.00772 -0.00874
ASE1 0.10262 0.11590 0.10277 0.11887
RMSE2 0.10417 0.11423 0.10307 0.11693
Coverage 94.7 95.2 94.6 95.0

1 Average standard error 2 Root Mean Square Error

β3 β4 β5
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FIGURE 2. Post warm-up MCMCs, using the Bayesian GMM for the first sim-
ulated dataset, with n = 500. β0 is the intercept, β1 is the parameter of the
treatment factor and (β2, ...β5) are for the K − 1 dummy time points variables.

estimations without specifying a full likelihood. Using pseudo-observations
simplifies the Bayesian modeling of survival data since it does not rely on
any assumption on the baseline hazard function. Complementary analysis is
ongoing to assess this approach under different working correlation matrix
assumptions through a comprehensive simulation study. Further research
will extend this work to other applications where pseudo-observations are
used in the frequentist framework, such as for restricted mean survival time,
multi-state models, and more generally, complex survival models.
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Abstract: We develop a method that clusters subjects based on two functional
biomechanic outputs simultaneously. This produces a novel exploratory analysis
technique of walking biomechanics that clusters 196 anterior cruciate ligament re-
construction (ACLR) patients into five distinct clusters. Patients in different clus-
ters exhibited different walking biomechanics and more desirable patient-reported
outcomes (PRO), clarifying potential relationships between walking biomechanics
and desirable PRO post-ACLR.

Keywords: clustering; functional data; biomechanics.

1 Introduction

Exercise science researchers have previously used traditional regression
analyses to relate biomechanical characteristics of walking and patient re-
ported outcomes (PRO) among post-anterior cruciate ligament reconstruc-
tion (ACLR) subjects. But this approach limits researchers’ abilities to dis-
cover possibly interesting relationships between PRO and walking biome-
chanics throughout the gait cycle. This study proposes employing the entire
curve of two commonly encountered biomechanic variables (vertical ground
reaction force (vGRF) and knee flexion angle (KFA)) to simultaneously in-
form cluster formation. Clustering subjects based on these two curves will
permit connecting the PRO of post-ACLR patients to their gait which
could highlight interesting patterns and lead to new discoveries about how
to better treat post-ACLR patients.
This study consists of 196 post-ACLR patients. Each participant performed
five walking trials in a biomechanics laboratory at the University of North

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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Carolina at Chapel Hill. For each trial, participants walked across a walk-
way, contacting a force platform that was set flush to the walking surface,
facilitating measurement of vertical ground reaction force during walking.
The participants were also instrumented with retroreflective markers placed
over specific anatomical landmarks. Near infrared high-speed video was
used to track the 3D position of these markers and estimate 3D knee joint
kinematics such as KFA. The resulting vGRF and KFA mean curves for
each subject are displayed in Figure 1.
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FIGURE 1. Vertical ground reaction force and knee flexion angle curves.

2 Methods

Let yij(t) denote the jth variable’s output for the ith individual at time
t with i = 1, . . . , n and t ∈ T . We note that j = 1 corresponds to vGRF
an j = 2 to KFA. We assume that both vGRF and KFA are realizations
of unknown subject-specific functions resulting in the following bivariate
functional model

yij(t) = β0ij + fij(t) + ϵij(t), for j = 1, 2. (1)

We assume that ϵij(t) ∼ N(0, σ2
ij) and β0ij ∼ N(µ0, σ

2
0). Further, we ap-

proximate each fij(·) for i = 1, . . . , n using a B-spline basis so that

fij(t) = h′(t)βij . (2)

Here h() is a known basis function and βij correspond to spline coeffi-
cients for subject i and curve j (Fahrmeir and Kneib 2005). We are in-
terested in formulating a model that produces clusters based on fij(t) but
that also preserves subject-specific curve fits. To make our clustering ap-
proach concrete, let c1, . . . , cn denote each subjects cluster label such that
ci ∈ {1, . . . ,K} where K denotes the number of clusters that is a priori
unknown. Then, given each subjects cluster label, the following hierarchical
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model for βij ensures good subject-specific fits while permitting flexibility
in cluster formation

βij |θ⋆j , λ2⋆j , ci ∼ N(θ⋆cij , λ
2⋆
cijI)

θ⋆jk ∼ N(µj , τ
2⋆
j P−1).

Note that θ⋆kj along with λ2⋆kj are cluster-specific means and variances with
k = 1, . . . ,K. (Objects with a super-script ‘⋆’ are all cluster-specific.) As a
result, the subject-specific spline coefficients vary around a cluster-specific
mean spline coefficient vector. λ2⋆kj plays the crucial role of regulating the
homogeneity of curves assigned to a particular cluster. To avoid knot se-
lection and overfitting, we model θ⋆kj using Bayesian P-splines (Lang and

Brezger 2004) so that P−1 denotes a penalty matrix from a lag-1 random-
walk that has been adjusted so that it is full rank (i.e., the first column
first row entry is changed from 1 to 2). τ2⋆j is a cluster-specific smooth-
ing parameter that determines the smoothness of the spline. We employ
a product partition model (PPM) to model c1, . . . , cn (Quintana and Igle-
sias 2003). To introduce the PPM, note that alternative to cluster labels,
ρ = {S1, . . . , Sk} will be used to denote a clustering of n units so that
i ∈ Sk implies that ci = k. Then the PPM has the following product form

Pr(ρ) ∝
K∏
k=1

c(Sk), (3)

where c(Sk) = (Sk − 1)! which favors clusterings with a small number
of large clusters. The model is finished by employing the following prior
distributions: σij ∼ UN(0, 0.01), λ⋆kj ∼ UN(0, 1), µj ∼ N(0, 1002P−1),

τ2⋆kj ∼ IG(1, 1/0.05), µ0 ∼ N(0, 1002), and σ2
0 ∼ IG(1, 1).

TABLE 1. Cluster means for symptomatic, mass, and months since surgery.

Cluster Symptomatic Mass(kg) Months Since Surgery

red 0.58 72.39 20.14
blue 0.61 73.99 20.15
green 0.51 75.42 27.54
orange 0.68 72.49 22.42
purple 0.43 64.74 33.82

3 Results

Using salso (Dahl et. al 2021) to estimate ρ resulted in five distinct patient
clusters, each with different biomechanical patterns (see Figure 2). The per-
centage of symptomatic patients significantly differed between the purple
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cluster and the others (Table 1). The orange cluster contained the greatest
percentage of symptomatic patients (68%), as well as GRF patterns reflect-
ing an under-loading strategy (top right plot in Figure 2). While the purple
cluster resulted in over-loading yet were the lightest group in terms of mass
and exhibited the longest time since surgery. The purple cluster patients
displayed increased GRF peaks and increased knee KFA, relative to the
patients in the orange cluster. These results support the idea that PRO,
post-ACLR, are at least partly related to walking biomechanics, including
GRF, and knee joint kinematics and kinetics.
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FIGURE 2. Clustered individual (left) and mean (right) vGRF and KFA curves.
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Abstract: Implementing insect monitoring systems provides an excellent oppor-
tunity to create accurate interventions for insect control. Growers can use meth-
ods enlightened by Integrated Pest Management to prevent economic damage to
their crops. However, selecting the appropriate time for applying an intervention
is still an open question. This decision is even more critical with insect species
that can abruptly increase their population size, such as the aphid Rhopalosi-
phum padi (Hemiptera: Aphididae). Moreover, studies involving the causal effect
of other covariates are required to predict insect outbreaks accurately. Therefore,
this research paper proposes a new approach to address this problem by com-
bining statistics, machine learning, and time series embedding. We used a time
series of aphids and climate data collected weekly in Coxilha (RS-Brazil) for eight
years. We pre-processed the data using our newly proposed approach and more
straightforward approaches. Using a Random Forests algorithm, we showed that
our novel approach yields competitive forecasts when looking at the Root Mean
Squared Error obtained from test data.

Keywords: Insect outbreak; Integrated Pest Management; Machine Learning;
Forecasting; Causality.
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1 Introduction

Insect outbreaks have frequently been documented in pest populations.
This ecological disturbance can affect forests and agroecosystems, result-
ing in economic and environmental damage. Yield loss is one of the many
impacts of insect outbreaks due to the consumption of plants by the
pest species. More specifically, arthropod pests are responsible for 20% of
global annual crop losses. Also, pests may transmit diseases; for instance,
Rhopalosiphum padi (Hemiptera: Aphididae) is the vector of barley yellow
dwarf virus. Therefore, it is vital to carry out correct management of insect
outbreaks to avoid economic damage.
These facts motivate developing and implementing of forecasting meth-
ods to prevent insect outbreaks. Especially methods that predict the best
moment to proceed with chemical, or other types of interventions in the
field, which are the focus of Integrated Pest Management (IPM). The vast
number of alternative solutions based on IPM provides an excellent toolkit
for growers; however, methods supporting accurate decisions for preventing
insect outbreaks and reducing losses still lead to open research questions.
This problem also provides an opportunity for Machine Learning (ML)
applications. However, many studies do not consider the cause-effect rela-
tionship, solely focussing on feature selection and ML methods prediction.
This paper introduces a novel approach for forecasting insect abundance by
combining statistics, machine learning, and time series analysis techniques.
We present a framework for understanding the causal effects of insect abun-
dance. Then we use a Random Forests (RF) method for predicting crop pest
dynamics based on the causality studies. Finally, we compared the RF per-
formance using the original dataset with all features, the dataset obtained
from the proposed causal approach, and two datasets based on the insect
abundance, with a delay of three and six time steps.

2 Methods

We used a time series of 211 observations of the total number of weekly
sampled aphids obtained from a monitoring system in Coxilha (RS/ Brazil).
Each observation of the time series is accompanied by climate covariates.
We reconstructed the time series by unfolding time dependencies among
observations so that the convergence provided by the Uniform Law of Large
Numbers is held, a necessary condition to ensure supervised learning. This
is obtained by applying Takens’ embedding theorem, which reconstructs
each observation x(t) from a time series x, for all t = 0, . . . , T , in phase
space, by creating a coordinate matrix Φ such that the t−row is given by:

ϕt = (x(t), x(t+ d), . . . , x(t+ (m− 1)d)),

Here, m is the embedding dimension (or the number of spatial axes), and
d is the time delay between consecutive observations. We have that ϕt
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corresponds to a position vector, or state, in phase space Φ. Given our
interest in analysing cause-effect relationships among time series observa-
tions, we employ Granger’s causality to map how a given exogenous or
explanatory variable (other time series such as temperature or humidity)
influences or anticipates events on the target time series. For this, we use a
time delay of d = 1, and determine the embedding dimension m using AR
(auto-regressive) models.
To compare the performance of our novel method, we (i) used only the
target time series (population of insects), with up to 3 or 6 lags behind to
forecast future observations and (ii) used all exogenous time series (envi-
ronmental covariates) as predictors. We performed validation by obtaining
one-step ahead forecasts for the entire time series (apart from the first few
observations, in case of lagged predictors). We trained Random Forests for
each set of features (reconstructed series, exogenous time series, 3- and
6-step lagged series) and obtained their performance based on the Root
Mean Squared Error (RMSE). We computed the performance of the Ran-
dom Forests algorithm 50 times, considering the stochastic nature of the
method to obtain statistics from the RMSE values.

3 Results and discussion

Figure 1 shows the predictions of the Random Forests method based on
the datasets containing all features, compared to a naive approach using
the target time series solely with a delay of 3 and 6, as well as the novel
method using reconstructed features. Averages RMSEs of 112.1 with a
standard deviation of 0.60, 63.6 with a standard deviation of 0.60, 67.3
with a standard deviation of 0.54, and 65.6 with a standard deviation of
0.53 were obtained for these datasets, respectively, showing that the novel
methodology proposed here is competitive.

4 Conclusions

The proposed reconstruction procedure presented a competitive perfor-
mance in terms of predictive power. It shows the feasibility of applying
these techniques to forecasting insect pest abundance, and therefore, this
study will be a basis for developing new techniques to predict insect out-
breaks.

Acknowledgments: This publication has emanated from research con-
ducted with the financial support of Science Foundation Ireland under
Grant number 18/CRT/6049. The opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the Science Foundation Ireland.
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FIGURE 1. One-step forecasts for the time series obtained from the aphid mon-
itoring system at Coxilha (RS-Brazil) based on ranfom forests trained with dif-
ferent sets of features. Our novel proposed method is the ‘Reconstructed’ series.
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Abstract: Studying animal behaviour towards other conspecific or heterospe-
cific individuals can provide new insights into local population dynamics and
biodiversity patterns. We use Markov-switching step selection models to link the
movement of an animal to occurrence estimates of other individuals obtained by
kriging. This allows for the detection of interactions such as attraction or avoid-
ance, while also accounting for temporal variation in the animals unobserved
behaviour. We illustrate our approach in a case study on bank vole interactions.

Keywords: Animal movement; Hidden Markov models; Latent variables.

1 Introduction

Inter- and intraspecific interactions between animals, such as attraction or
avoidance, influence local population and community dynamics. This in
turn affects species distributions and biodiversity patterns. To detect and
study such interactions based on concurrent movement data, Schlägel et al.
(2019) propose a step-selection model which links the animals’ movement
decisions to dynamic occurrence estimates of other individuals obtained
through kriging of their movement paths (Fleming et al., 2016). However,
an animal’s response to occurrence of other individuals can vary over time
and depend on other, usually unobserved behavioral/biological states. For
example, a resting animal may show no reaction at all, and a female’s re-
sponse to male occurrence may depend on its oestrous cycle phase (Schlägel
et al., 2019). We therefore combine the approach with Markov-switching

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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FIGURE 1. Illustration of the Markov-switching step selection model.

integrated step selection analysis (MS-iSSA, Pohle et al., 2022) which in-
corporates the state-switching patterns using an underlying latent Markov
chain. We illustrate the method in a case study on fine-scale bank vole
interactions.

2 Methods

Let {xk,t}Tt=1 be the sequence of locations of individual k (k = 1, . . . ,K)
observed at regular time intervals. In the Markov-switching step selection
model (Figure 1), we assume the steps from location xk,t to xk,t+1 to be
driven by an underlying latent N -state Markov chain {St}Tt=1 with transi-
tion probability matrix Γ = (γij) and γij = Pr(St = j | St−1 = i). Given
the spatial covariate map Z and the current state St = i, the distribution
for a step to location xk,t+1 is modelled as:

fi(xk,t+1 | xk,t,xk,t−1,Z;θi,βi) =

selection-free
movement kernel︷ ︸︸ ︷

Φ(xk,t+1 | xk,t,xk,t−1;θi) ·

movement-free
selection function︷ ︸︸ ︷
exp(ZT

k,t+1βi)∫
x̃∈R2

Φ(x̃ | xk,t,xk,t−1;θi) · exp(Z̃Tβi)dx̃︸ ︷︷ ︸
normalising constant

.

Φ(·) describes the space use density in absence of any habitat selection and
is usually defined in terms of step length and turning angle. It is weighted
by a log-linear function of the state-dependent selection coefficient vector βi
which indicates possible preference for or avoidance of the location-specific
characteristics stored in the covariate vector Zk,t+1. Usually, Zk,t+1 con-
tains classical habitat variables such as landcover type. For studying inter-
actions, however, it mainly contains the occurrence estimates {O−k,t+1} of
the other K−1 simultaneously tracked individuals. These are obtained from
the corresponding location data by kriging within a rolling time period of
length Tkrige (Schlägel et al., 2019). Kriging assumes the movement process
to be reasonably modelled by a Gaussian stochastic process and provides
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a space use density estimate for the given time interval (Flemming et al.,
2016).
The integral in the denominator of fi is usually intractable. MS-iSSAs
circumvent its evaluation by using a case-control design in which each
observed location is mapped with M randomly drawn control locations.
Parameters can then be estimated using a Markov-switching conditional
logistic regression with a numerical maximisation of the corresponding log-
likelihood (Pohle et al., 2022).

3 Bank vole interactions

We applied MS-iSSAs to movement data of synchronously tracked bank
vole individuals (Myodes glareolus), a subset of the data analysed in
Schlägel et al. (2019). Our data set contained 6-minute locations of n = 12
individuals split into 4 replicates with 2 males and 1 female each. Indi-
viduals within a replicate were synchronously tracked in fenced outdoor
enclosures of 50m× 50m for 3− 5 days. Due to daily system maintenance,
this resulted in 708− 1, 200 locations per individual, split into 3− 5 bursts
of around 23 hours each.
To study interactions between the bank voles, with a special interest in in-
teractions between individuals of opposite sex, we applied 2-state MS-iSSAs
to the individual movement data with state-dependent gamma distributions
for step length and uniform distributions for turning angle. Occurrence es-
timates (Tkrige = 4h) of all conspecifics within the same replicate were used
as covariates for the selection part of the model. For parameter estimation,
we used M = 500 control locations per observed location and tested 50
sets of random starting values to initialise the numerical optimisation. We
further applied corresponding integrated step-selection analyses (iSSAs; no
state-switching) and hidden Markov models (HMMs; no selection coeffi-
cients) to the same case-control data sets.
For most individuals, the MS-iSSA approach could reasonably distinguish
between two activity levels. State 1 was associated to shorter step length
compared to state 2 (Figure 2) and could thus reflect a rather inactive
behaviour. This is in line with the estimated selection coefficients for oc-
currence of opposite-sex individuals: For all but one bank vole individual,
the coefficients of state 1 were non-significant (p-values < 0.05; Figure 2)
which indicates neutral behaviour towards the conspecifics. However, es-
pecially for male 1 in replicate D interpretation must be taken with care.
Here, the Viterbi-decoded state sequence assigned over 96% of the obser-
vations to state 1 and the MS-iSSA showed larger mean step lengths in
the estimated state-dependent gamma distributions than for all other in-
dividuals. Thus, the second state either captured rare events or outlying
observations.
The selection estimates of state 2 (“active”) indicated similar interactions
as the iSSA (model without state-switching; Figure 2), except for the fe-
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FIGURE 2. Results for the bank vole case study. The right panel shows the
estimated state-dependent gamma-distributions for steps length (movement ker-
nel) for each bank vole in each replicate, weighted by the relative Viterbi state
frequencies. The left panel shows the estimated iSSA (black) and MS-iSSA (in
colour) selection coefficients for occurrence of opposite-sex individuals with 95%
confidence intervals. Non-significant coefficients (p < 0.05) are greyed out. Zero,
positive and negative coefficients indicate neutrality, attraction and avoidance,
respectively.

males in replicate B and D. Nevertheless, the information criteria AIC and
BIC usually pointed to the Markov-switching step-selection model. Only
for the female in replicate C both criteria selected the HMM (no selection
coefficients). The BIC further preferred an HMM for the female in replicate
D, and the iSSA (no state-switching) for male 1 in replicate D.

4 Discussion

Interactions between individuals are complex and often difficult to study,
especially for animals in their natural environment. We provide an ap-
proach that uses movement data to detect interactions such as attraction
or avoidance while also accounting for the temporal variation in the an-
imals unobserved behaviour. In the bank vole case study, the MS-iSSA
provides reasonable results and we are currently working on a second case
study on yellowhammer interactions. It is important to note that the spa-
tial and temporal resolution of the movement data can strongly influence
the model results and interpretation. For example, some behaviours and
interactions might not be expressed on very coarse (spatial, temporal) or
very fine (temporal) scales.
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Abstract: Model-based component-wise gradient boosting is a popular tool for
data-driven variable selection. In order to improve its prediction and selection
qualities even further, several modifications of the original algorithm have been
developed, that mainly focus on different stopping criteria, leaving the actual vari-
able selection mechanism untouched. We investigate different prediction-based
mechanisms for the variable selection step. These approaches include Akaikes
Information Criterion (AIC) as well as a selection rule relying on the component-
wise test error computed via cross-validation (CV). The AIC and CV routines
are implemented for Generalized Linear Models and evaluated regarding their
variable selection properties and predictive performance. The simulation study
revealed improved selection properties whereas the prediction error could be low-
ered in a real world application with age-standardized Covid-19 incidence rates.

Keywords: Gradient Boosting; Variable Selection; Prediction Analysis; High-
dimensional Data; Sparse Models.

1 Introduction

Regression settings with a large number of possible covariates necessitate
tools for proper variable selection. One popular tool for data-driven variable
selection is model-based component-wise gradient boosting (Bühlmann and
Hothorn, 2007), from now on referred to as boosting.
Boosting is a statistical learning mechanism, that iteratively estimates the
coefficient vector of a regression model. It refits simpler estimation proce-
dures on the the gradient of a differentiable loss function (pseudo-residuals).
In the case of Generalized Linear Models (GLMs), this loss is usually chosen

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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as the negative of the corresponding log-likelihood. For each iteration, the
model fit is updated in a component-wise fashion, i.e. every single covariate
is fitted separately and the algorithm identifies and updates the covariate
whose update reduces the loss function the most. The boosting procedure is
run for a pre-specified number of iterations. Calculating prediction criteria
based on the coefficient vector of each iteration allows to select the best
performing coefficient vector afterwards. If some covariates did not enter
the model up to the selected iteration, they are excluded from the final
model. Furthermore, the iteration selection enables coefficient shrinkage.
Boosting combines further advantages like fast computation, model choice
as well as the applicability in high-dimensional settings, where the num-
ber of covariates exceeds the number of observations and offers a flexible
framework, that can be used for various applications.
There exist several modifications of the original boosting algorithm that
aim to optimize its performance even further, e.g. to lower the false pos-
itive rate (FPR) such that only true influential variables enter the final
model (for an overview see Mayr et al., 2017). The majority of approaches
mainly focuses on different stopping criteria, leaving the actual variable
selection mechanism untouched. Since boosting is a greedy algorithm, this
variable selection step is of major importance. Thus, we investigate the
variable selection step in order to increase the sparsity of boosted GLMs
without sacrificing the good predictive performance. Therefore, two dif-
ferent prediction-based variable selection mechanisms are presented and
evaluated in the following. Instead of minimizing a loss function, the new
approach focuses on minimizing various prediction criteria directly.

2 Methods

Investigating the variable selection step of boosting is motivated by its
direct impact on the variable selection process compared to a more down-
stream impact of the boosting iteration selection. We examine two differ-
ent variable selection criteria for boosting of GLMs. Pulling the former
iteration-selection criteria, namely CV and the AIC, into the variable se-
lection loop of the algorithm may prevent the inclusion of false positives
already during the fitting process.
Both prediction-based variable selection mechanisms do not need further
time-consuming computations to determine the optimal stopping iteration,
since they incorporate a prediction-based measure, which is evaluated for
each covariate in every iteration. However, a minimum improvement thresh-
old for the prediction criterion and the coefficient vector of 10−8 is specified.

3 Simulation

In order to test the performance of the two new prediction-based vari-
able selection mechanisms, a simulation study with a normally distributed
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outcome has been conducted. We varied the number of covariates k, the
noise-to-signal ratio (NSR), the amount of true positive covariates (INF)
and the correlation structures of the covariates. In terms of the FPR, the
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FIGURE 1. False Positive Rate of algorithms by simulation setting.

simulation study clearly recommends using the new AIC-boost since it out-
performs mboost with 10-fold CV (mboostCV) (Hothorn et al., 2010) in 19
of the 24 settings in terms of the median FPR (Figure 1). Furthermore, the
variability of the FPR is drastically reduced in every tested simulation set-
up. The most influential parameter appears to be the NSR. In situations
with strong signal, AIC-boost is more likely to outperform mboostCV than
in weak signal situations. Enlarging the number of true informative covari-
ates and keeping the other parameters constant results in a higher FPR of
mboostCV, whereas the two modifications perform more robust and reveal
very similar FPRs across the differing numbers of informative covariates.
In the majority of settings, CV-boost results in higher FPRs. However, the
much lower FPR for AIC-boost is accompanied by a slightly lower TPR in
some setups (not displayed here).
Since prediction and sparsity were seen as two opposing aims in model selec-
tion processes, the Mean Squared Prediction Error (MSPE) is analysed as
well. Despite the fact that AIC-boost often results in sparser models, which
increases the interpretability, it still keeps up with the benchmark model
in terms of prediction accuracy (see Figure 2). CV-boost produces slightly
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(considerably) higher median MSPE in low-dimensional (high-dimensional)
settings with uncorrelated covariates. Using a Toeplitz covariance structure,
differences between the three methods are less pronounced. Thus, applying
the AIC-boost approach results in sparser models without sacrificing the
predictive performance of the model in the vast majority of scenarios.
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FIGURE 2. Mean Squared Prediction Error of algorithms by simulation setting.

4 Data Application on Covid-19 data

To evaluate the two modified algorithms in a realistic setting, they were
applied to a real world data set. Therefore, a subset of the data base from
Doblhammer et al. (2022) is used. The authors investigated the relationship
of county-scale variables on the county-specific age-standardized Covid-19
incidence rates in Germany in order to uncover possible social disparities.
The used subset of their data contains 163 variables measured on 401 coun-
ties in Germany. The variables cover socioeconomic characteristics, like de-
mography, social economic and settlement structure, health care, poverty,
unemployment as well as interrelationship with other regions.
By looking at the correlation structure of the possible covariates, one can
observe highly correlated blocks of variables corresponding to thematically-
related covariates. All variables are either metric or dummy-coded. Metric
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covariates are standardized. The outcome of interest is the age-standardized
incidence rate on the county-level for the first lockdown period (March 16,
2020 – March 31, 2020). It follows a log-normal distribution.
For reasons of comparability, the baseline model and the new CV-boost are
trained using the same folds. Since these two algorithms are highly depen-
dent on the data split, they are run five times with different data splits and
median values are reported. The calculation of the MSPE is based on 100
randomly chosen data points. The high sparsity of mboostCV comes along

TABLE 1. Performance of algorithms on Covid-19 data set.

method
stopping
iteration

no. of
covariates

MSE MSPE

mboostCV † 20 8 0.232 0.365
mboostAIC 2039 85 2.553 2.801
LASSO-AIC / 10 0.211 0.342

AIC-boost 164 21 0.154 0.296
CV-boost † 447 53 0.140 0.281

† model averaging performed, median values are reported.

with a poorer predictive performance regarding the MSE and MSPE. Both
tested algorithms outperform mboostCV regarding the predictive perfor-
mance but include (many) more variables than the baseline model. They
also outperform LASSO with an AIC stopping criterion. Comparing the
two new algorithms, the predictive performance is very similar by differing
numbers of included covariates.

5 Summary

In summary, the findings suggest that the AIC modification can improve
variable selection properties in component-wise gradient boosting by bridg-
ing sparsity and predictive performance. The purely loss-function based
approaches CV-boost does not exhibit a lower FPR and further result in
worse predictions. In the application on Covid-19 data, AIC-boost com-
bines the sparsest model with a comparable prediction accuracy and thus
would be the preferred model.
These results, however, have certain limitations, e.g. the modifications are
restricted to the OLS base learner; however, other base learners, such as
splines or tree-based ones, are worth investigating. This is also important
in order to preserve the flexibility of the boosting framework. Despite the
fact that the simulation study used a common model selection strategy
as benchmark, further research comparing AIC-boost to other boosting
modifications (e.g. probing (Thomas et. al 2017) or deselection (Strömer et.
al 2022)) will provide a more complete picture of its performance. Since the
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simulation study only addresses one type of outcome-distribution, a simpler
simulation study with Poisson distributed values has been performed to
overcome this limitation. Contrary to the expectations, the FPR is not
reduced in a majority of the settings when applying AIC-boost. In most
settings AIC-boost results in higher prediction errors. With regard to the
TPR, mboostCV does not perform well, especially in the case of a high
NSR, and it becomes obvious, that AIC-boost often results in a higher
TPR. In this simulation, the higher sparsity of mboostCV comes with the
drawback of a low TPR which is undesirable.
Some first assumptions on the underlying reasons for the differing results
of the two simulations include the approximation of the hat matrix, which
may be inaccurate in this setup. Since the advantages of using AIC-boost in
terms of sparsity and prediction accuracy diminish, the preliminary results
warrants further research to test the properties of the modifications for
other types of GLMs, e.g. Binomial distributed outcomes.

Acknowledgments: Special Thanks to Gabriele Doblhammer and Daniel
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the DFG (Number 426493614) and the Volkswagen Foundation.
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Abstract: Sampling groundwater quality monitoring wells is a costly and time
intensive process that incurs health and safety risks. Reducing the number of
wells whilst minimising information loss can greatly increase the sustainability
of long-term monitoring. Wells that provide redundant information can be iden-
tified by assessing their observations’ influence on statistical model estimates.
Well-based cross-validation (WBCV) could be used to obtain such a measure
of influence for each well, however, the associated computational cost renders
this option unfavourable. In this paper, we propose a method based on influ-
ence statistics of regression-based, groundwater solute concentration models, as
a computationally efficient, approximate alternative. The method, named well in-
fluence analysis (WIA), approximated WBCV results in a simulation study and
real groundwater contaminant observations with an average 77% and 73% accu-
racy respectively. WIA will be implemented in the ”well redundancy analysis”
feature of GWSDAT, an open-source software for the spatiotemporal modelling
of groundwater monitoring observations.

Keywords: Groundwater Monitoring; Groundwater Contamination; Statistical
Modelling; Spatiotemporal; Influence Statistics.

1 Introduction

The aim of groundwater quality monitoring during the remediation of con-
taminated sites is to understand the behaviour of the solutes of concern
by observing changes in their concentration levels at fixed sampling loca-
tions called wells. Spatiotemporal statistical models can be used to estimate
contaminant concentrations over spatial domains of interest using these

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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observations. However, collecting and analysing samples from groundwater
monitoring wells is costly, time intensive and incurs health and safety risks.
Reducing sampling intensity whilst minimising the loss of information can
greatly increase the efficiency and sustainability of long-term groundwater
quality monitoring. Sampling intensity can be decreased by reducing the
number of sampling locations. In many cases, fewer wells can be sufficient
for supporting robust statistical models, provided they adequately capture
the spatiotemporal heterogeneity in solute concentrations. Therefore, the
choice of monitoring wells to omit from sampling is crucial, and should
be based on qualitative and quantitative analyses. A possible quantita-
tive approach using statistical models is assessing sampling wells based on
their observations’ impact on solute concentration estimates. Wells whose
data provide redundant information to the model, could be considered for
omission from future sampling campaigns. Feedback from users of the open-
source, spatiotemporal groundwater quality modelling software, GWSDAT
(Jones et al. 2014), highlighted the need for a tool to facilitate this well re-
dundancy analysis. Ranking wells by influence prior to testing the impact of
omitting one, aims to reduce the need for a trial-and-error approach. Assess-
ing well influence can be done iteratively, using well-based cross-validation
(WBCV). However, the computational cost associated with re-fitting the
model in each iteration makes this approach unfavorable. In this work, we
aim to show that for regression-based groundwater contamination models,
well influence analysis (WIA) could be a computationally efficient, approx-
imate alternative to the cross-validation-based method. WIA provides a
suggested sequence for omitting wells, by ranking them using influence
statistics commonly used in regression analysis. The proposed method was
tested in a simulation study and on real groundwater monitoring data.

2 Simulation Study

A simulation study (Radvanyi, 2023) was designed to analyse how closely
WIA approximated the cross-validation-based well influence rankings in
different scenarios, and to compare different influence statistics that could
be used for WIA. The simulation study was conducted using synthetic data
sets.

2.1 Synthetic Data

The synthetic data (McLean et al. 2019) contained coordinates, sampling
times and solute concentrations for three hypothetical contaminant plumes
of increasing complexity simulated using process based models (Figure 1).
15 % multiplicative random noise was applied to the data to mimic the
measurement errors of real groundwater observations. Samples were then
drawn at select times and coordinates to mimic sampling from monitoring
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wells. Nine monitoring network designs were created for each plume using
6, 12 and 24 wells with 3 well placement strategies. These strategies were
random, grid and expert, the latter implying knowledge of plume charac-
teristics, such as origin and groundwater flow direction. Each scenario ran
for 100 iterations.

FIGURE 1. Hypothetical plumes: simple (l), moderate (c) and complex (r).

2.2 Modelling Approach

Concentration estimates over the full spatial domain were obtained using
P-splines models, also used in GWSDAT (Evers et al. 2015). P-splines
(Eilers & Marx, 1996) are regression splines fitted by least-squares with a
roughness penalty. The P-splines model can be written as

yi =

m∑
j=1

bj(xi)αj + ϵi,

where yi, i = 1, 2, ...n, are the natural logarithm of the solute concen-
trations, xi are the corresponding coordinates and sampling times, bj ,
j = 1, 2, ...m, are B-spline basis functions, αj are the basis coefficients
and ϵi are errors, assumed to be independent with N(0, σ2).

2.3 Well-Based Cross-Validation

The baseline ranking of well influence on estimated solute concentrations
was computed via well-based cross-validation (WBCV; Evers et al. 2015).
WBCV is a form of leave-one-out cross-validation, where each well (and
hence associated observations) was removed sequentially and used as the
test set for a model trained on the remaining data. The well ranking was
given by the numerical order of corresponding root-mean-square errors
(RMSE) calculated by:

RMSEk =

√∑nk

l=1 (ykl − ŷkl)2
nk

,

where k = 1, .., w and w is the total number of wells, ykl is the l-th obser-
vation from the k-th well, ŷkl is the l-th fitted value and nk is the number
of observations.
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2.4 Well Influence Analysis

Different influence metrics were compared for approximating the WBCV
rankings. Cook’s distance (CD; Cook, 1977), which is a measure of the sum
of changes in regression estimates if an observation is deleted, produced the
most informative results. It can be expressed using leverages, which are the
diagonal elements of the projection matrix from the P-splines model:

CDi =
1

p
(rsi )

2 hii
1− hii

,

where p is the effective degrees of freedom, rsi is the standardised residual
and hii is the leverage of the i-th observation. The rankings were given by
the numerical orders of the median CD values for each well. The studied
influence metrics were originally derived for linear regression. Their appli-
cation in this case is supported by the fact that P-splines are analogous to
linear regression.

2.5 Assessing Performance

The performance of WIA was quantified by calculating the normalised dif-
ference score Dn, which indicated the total difference in well ranks between
WIA and WBCV. Dn is bounded by 0 ≤ Dn ≤ 1 with 0 meaning the rank-
ings were equivalent. Dn was calculated by

Dn =

∑w
i=1 |owbcvi − oiai |

Dmax
,

where owbcvk is the rank of the k-th well based on WBCV and oiak is its rank
based on WIA. The maximum difference between the two rankings, Dmax

is a function of the number of monitoring wells such that Dmax = w2

2 .

2.6 Results

The mean Dn for CD-based WIA was 0.23, which means that on average,
it approximated the baseline (WBCV) rankings with 77% accuracy. Figure
2 shows the results in the form of a boxplot categorised by scenario design
features. Mean Dn values increased with plume complexity from 0.20 to
0.27. The complex plume is also associated with the highest variance. The
monitoring well network design also seemed to play a role in the outcome
of the analysis. The results show that WIA has better performance if well
placement is done based on site characteristics as opposed to randomly or
in a grid pattern. In terms of the number of monitoring wells, the smallest
mean Dn results were obtained with 6 wells. However, this is most likely an
artifact related to fewer possible differences in well ranks between WIA and
the baseline. This effect also seems to disappear given a sufficient number
of wells, since there is little difference in results between 12 and 24 wells.



Radvanyi et al. 277

FIGURE 2. Breakdown of mean normalised difference scores (Dn; 0 ≤ Dn ≤ 1)
by design attributes plume complexity, well placement and the number of wells.
A smaller Dn indicates a more accurate estimation of WBCV rankings by WIA.

3 Real Data Application

The comparison of WIA and WBCV was also performed on real groundwa-
ter contamination data from an undisclosed monitoring site. The data set
contained the concentrations of five contaminants in groundwater samples
from 32 monitoring wells collected over a 4 year period. The contaminants
were modelled separately. Table 1 shows the results of the analysis by con-
taminant.

TABLE 1. Breakdown of normalised difference scores (Dn; 0 ≤ Dn ≤ 1) by
contaminant from the groundwater monitoring data. A smaller value indicates a
more accurate estimation of WBCV ranking by WIA.

Contaminant Dn

Ethylbenzene 0.36
Toluene 0.25
Nitrate 0.18
Sulphate 0.23
TPH 0.32
Mean 0.27

The mean Dn was 0.27, which translated to an average of 73% accuracy in
comparison to WBCV. Just as in the simulation study, most of the devia-
tion in the WIA ranking compared to WBCV was due to an aggregation
of minor rank differences. This means that wells generally occupied similar
positions in both rankings.
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4 Conclusions

In conclusion, empirical evidence was presented to support the applica-
tion of influence statistics in the proposed context. WIA estimated WBCV
results with an average 77% and 73% accuracy in the simulation study
and real data examples respectively. These results were positive given the
aim and the approximate nature of the analysis. The simulation study also
showed that the monitoring network design and contaminant plume char-
acteristics also affect the accuracy of WIA. WBCV would be the preferred
ranking method, but it is computationally unfavorable because it requires
fitting w models for each well that is considered for omission from future
sampling campaigns. In contrast, WIA only requires a single model be-
fore each omission, which makes it a more efficient alternative to WBCV
for ranking wells by influence on solute concentration estimates. In other
words, there is trade-off between accuracy and computational efficiency, but
the results indicate that in this case, the gain in efficiency is greater than
the loss in accuracy. WIA is easy to implement in software built around
regression-based groundwater quality models, such as GWSDAT, and it
can help determine the sequence in which wells should be omitted during
well redundancy analysis.
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Abstract: Measurements of high-resolution tree circumference dendrometers are
the result of two distinct processes: the irreversible growth of the tree stem and re-
versible shrinking and swelling. We propose a novel statistical method that allows
us to decompose these measurements into a permanent and a temporary compo-
nent, while explaining differences between the trees and years by covariates. Our
model embeds Gaussian processes (GPs) with parametric mean and covariance
functions as response structures in a distributional regression framework with
structured additive predictors. We present different mean and covariance func-
tions, connections with other model classes, and demonstrate the efficiency of our
Markov chain Monte Carlo sampling scheme in applications and simulations.
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1 Introduction

Tree growth, and the growth of tree stems in particular, is a process that
is of strong ecological and economic interest. Unfortunately, it is difficult
to measure the formation of new wood and bark cells in the cambium
resulting in permanent stem growth, and while electronic dendrometers
can record the variation of the stem circumference on small time scales,
these measurements also capture the reversible shrinking and swelling of
the stem due to changes in its water content.
We propose a novel statistical method for the analysis of high-resolution
dendrometer measurements that permits us to decompose the dendrome-
ter measurements into a permanent and a temporary component through
stochastic assumptions and explanatory variables. Figure 1 shows a sub-
sample of the recorded growth curves, each of which is assumed to be a
realization of a Gaussian process (GP). We observe that the colored ash
grows primarily between mid-April and mid-July, while the colored beech
grows later and more during the vegetation period.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Cumulative radial growth of a subsample of the trees from our
dataset. Colored lines represent two exemplary trees, one beech and one ash,
while the gray lines illustrate the diversity of the growth patterns in the dataset.

The fact that we link multiple properties of the mean and covariance func-
tions of the GPs to explanatory variables puts our model in the domain
of so-called distributional regression models. Standard distributional re-
gression models use univariate or low-dimensional multivariate response
variables. Following this line of thought, we show that the distributional
regression approach also works for more general, continuous response struc-
tures such as GPs.

2 Gaussian Process Responses

We consider GPs {Yi(t); t ∈ T} as response structures in structured addi-
tive distributional regression, where the observation index i runs from 1 to
N and the index set T is a metric space that can represent time, space, or
space-time. The GPs are assumed to be conditionally independent given
the covariate vectors xi,

{Yi(t); t ∈ T} | xi
ind.∼ GP(m(t;xi), c(t, t

′;xi)), (1)

where t, t′ ∈ T . As a specific feature of distributional regression, the mean
function m(·;xi) and the covariance function c(·, ·;xi) both depend on the
covariates xi, which differ between the observations 1 to N but are constant
within the index set T .
More precisely, the mean and the covariance function are linked to the
covariates xi via their respective parameter vectors θm and θc,

m(t;xi) = m(t; θm(xi)) and c(t, t′;xi) = c(t, t′; θc(xi)).

Let θi = [θm(xi)
⊤, θc(xi)

⊤]⊤ be the vector of all parameters of the GPs and
K its dimension. Each parameter θki is then linked to a predictor ηki via a
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FIGURE 2. Trace plots for a sampler with separate blocks for the regression
coefficients for the covariance parameters (left) and a sampler with one joint
block for the coefficients (right).

strictly monotonic link function hk, for k = 1, . . . ,K, i.e. hk(θki) = ηki or
θki = h−1

k (ηki).
In practice, each GP {Yi(t)} can only be observed at a finite number of
points tj ∈ T , for j = 1, . . . , ni. The collection of random variables at these
points has a multivariate normal distribution,

[Yi(t1), . . . , Yi(tni
)]⊤ | zi(t1), . . . , zi(tni

), xi
ind.∼ Nni

(µi,Σi), (2)

where the elements of the mean vector µi and the covariance matrix Σi are
the evaluations of the mean function m and the covariance function c at
the observed points

µi = [µi,j ] = m(zi(tj); θ
m
i ) and Σi = [σi,j,j′ ] = c(zi(tj), zi(tj′); θ

c
i ) (3)

for j, j′ = 1, . . . , ni.
From these distributional assumptions, we can derive the likelihood (as well
as the score function and Fisher information) which serve as essential parts
of our Bayesian treatment of GP response regression. We perform fully
Bayesian inference with an MCMC sampler which uses inverse gamma pri-
ors and Gibbs updates for each scalar element of the smoothing variance,
and Metropolis-Hastings updates with locally adaptive IWLS proposals for
the regression coefficients. As the IWLS proposals involve the observed or
expected Fisher information matrix, the regression coefficients are sampled
in blocks for numerical stability and efficiency. Typically, one block con-
sists of the regression coefficients of one smooth term, and the blocks are
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sampled in a nested loop over the distributional parameters first and the
smooth terms second. As discussed in the next section, we sample the pa-
rameters of certain smooth terms in one joint block, which can reduce the
autocorrelation of the MCMC chains substantially as illustrated in Figure 2

3 Application and Simulations

In our analysis of stem growth, we rely on a Weibull growth curve

mw
(
z(t) = t; θm = [l, a, b]⊤

)
= l ×

[
1− exp

(
−
(
t

b

)a)]
as a mean function and a scaled Matérn covariance function

cm
(
t, t′; θc = [σ, ϕ]⊤

)
= σ2 × ρ

(
d(t, t′)

ϕ
; ν

)
,

where ρ is the Matérn correlation function with smoothness parameter ν,
and d(t, t′) is a distance function. Consequently, we have the following five
distributional parameters: the limit l, the shape a, and the scale b of the
Weibull growth curve, and the standard deviation σ and the range ϕ of
the covariance function. Each of these parameters is related to regression
effects of different complexity with the predictors and inverse link functions
being defined as

li = exp(βl0 + (Tree ∗Year)i × βl1),

ai = exp(βa0 + Speciesi × βa1 + DBHi × βa2 + (Site ∗Year)i × βa3),

bi = exp(βb0 + Speciesi × βb1 + DBHi × βb2 + (Site ∗Year)i × βb3),

σi = exp(βσ0 + Speciesi × βσ1 + DBHi × βσ2 + fYeari(xi, yi;βσ3)),

ϕi = exp(βϕ0 + Speciesi × βϕ1 + DBHi × βϕ2 + (Site ∗Year)i × βϕ3),

where β•,0 and β•,2 are scalar regression coefficients, while β•,1 and β•,3
are vectors of regression coefficients, and Speciesi denotes the entries of the
design matrix for the dummy variable for the species of the tree where the
i-th growth curve was recorded,

Speciesi =


[0, 0] if the i-th growth curve is of a beech,

[1, 0] if it is of a ash, and

[0, 1] if it is of a sycamore.

Similarly, (Tree ∗ Year)i and (Site ∗ Year)i are the entries of the design
matrix for the interaction of two dummy variables: in the first case, of the
individual tree and the year, and in the second case, of the field site and the
year. Finally, fYeari denotes a year-specific spatial kriging smooth. Figure 3
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FIGURE 3. Posterior mean of a spatial kriging smooth in the predictor for the
standard deviation. The field sites are marked with small crosses. Lighter colors
indicate a higher standard deviation.

exemplarily shows the posterior mean estimate of a spatial smooth in the
predictor for the standard deviation.
Figure 4 illustrates one of our simulation scenarios where we explore the
extension of GP regression to processes on a sphere to highlight that higher-
dimensional Euclidean space or even non-Euclidean metric spaces can be



284 A distributional regression approach for gaussian process responses

-15-10 -5  0  5  10 15 20

-20-15-10-5 0 5 10 15 20

-10

-5

 0

 5

 10

 15

 20

 25

-15-10 -5  0  5  10 15 20

-20-15-10-5 0 5 10 15 20

-10

-5

 0

 5

 10

 15

 20

 25

FIGURE 4. Mean function (left) and corresponding realization (right) of a GP
with an exponential covariance function resembling a stylized crown shape.

treated when employing appropriate distances. The processes in this spe-
cific scenario are defined on a sphere, resembling shapes of tree crowns,
and we use the great circle distance for quantifying distances. In an appli-
cation, the tree species or the light availability could be used as covariates
to explain the properties of the mean and the covariance function of the
crown shapes. The mean properties are, among others, the average radius
and the vertical elongation, while the covariance properties are the size and
the persistence of the deviations from the mean.
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Abstract: The motivation for this work was an experiment was developed to
evaluate the effects of previous parasitism on the parasitism rate of the species
Trissolcus basalis and Telenomus podisi. The statistical problem in this study was
to model, successively, the choice of eggs (with four possibilities with parasitised
eggs or not) and the conditional behaviour given the choice (marking, ovipositing
or drumming on the chosen egg). We consider state-space models in two successive
steps to calculate double transition probabilities. We found statistically significant
differences regarding the choice of parasitised eggs, with T. podisi being more
likely to choose healthy eggs than the competing species.
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1 Introduction

Longitudinal studies with categorical data are very common in the Ento-
mology and extensions of Generalized Linear Models can be used, such as
marginal, mixed effects and transition models (Diggle et al., 2002). The
focus of this work is on a continuous time transition model motivated by a
biological problem, associated with the parasitoid wasps Telenomus posidi
and Trissolcus basalis, which useful for pest control in soybean (Bon, 2021).
Since the parasitoids can make two successive choices regarding the type
of egg (non-parasitised, parasitised by their own species or by the oppos-

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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ing species) and the behaviour after choosing an egg (marking, oviposit-
ing or drumming), the subjects have double transitions. In this context,
the multi-state model is very useful to describe the transitions from one
state to next, and also to assess the effect of experimental design condi-
tions (Meira-Machado et. al., 2009, Lara et al., 2020). The main goal this
work is to present an extension to the multi-state models associated with
successive transitions of the parasitoids.

2 Material and Methods

2.1 Motivational study

The data comes from an experiment carried out at the Department of
Ecology and Evolutionary Biology, Federal University of São Carlos, Brazil,
in 2021. Interactions between parasitoid females of the species Telenomus
posidi or Trissolcus basalis with eggs of the stinkbug Euschistus heros took
place in experimental arenas, represented by Petri dishes (15 × 2 cm). A
total of 12 eggs were made available to a female parasitoid, divided into
3 groups: 4 eggs previously parasitised by females of T. podisi ; 4 eggs
parasitised by T. basalis and 4 healthy eggs (not parasitised by any species)
(Figure 1). For the observations, the following behaviours were defined and
quantified: a) walking; b) drumming; c) ovipositing and d) marking. Each
female was observed for 35 minutes. Ten replicates were performed for each
parasitoid species.

T. basalis T. podisiwithout parasitoid

FIGURE 1. Experimental scenarios for quantifying the success of parasitism in
the presence of bug eggs previously parasitised by Trissolcus basalis, by Teleno-
mus podisi and not parasitised in the absence of competition (Adapted from Bin
et al., 1993)
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2.2 Methods

The methodological procedures are centred on continuous stochastic pro-
cesses and Generelized Linear Models. We consider two random variables,
namely: {Y1(t) ∈ S1, t ∈ τ}, S1 = {1, 2, . . . , k = 4} for the egg choice,
where “4” represents walking or no choice, and {[Y2 | Y1](t) ∈ S2, t ∈ τ}
[Y2 | Y1](t) ∈ S2, t ∈ τ S2 = {1, 2, . . . , k = 4} for choice, where “4” rep-
resents return to set S1, hereafter named “other”. In both state sets, we
assume the Markov propriety with a finite number of jumps at each time
interval and an exponential distribution, i.e., Fa(t) = 1−exp(−qat) if t ≥ 0.
Then, assuming stationarity of the processes, by means of the Markovian
Cox-model, we obtain, through maximum likelihood, the intensities and
transition probabilities matrices, in this stochastic double random walk of
the parasitoids. We denote these matrices by P1(t), Q1(t), and P2(t),
Q2(t). The likelihood-ratio test was used to assess the treatment effect.
The analyses were carried out using packages survival and msm available
for R software (R Core Team, 2022).

3 Results

We begin with a brief initial exploratory data analysis using contingency
tables: (1) treatment versus egg choice and (2) treatment versus behaviour.
According to the χ2 test, there is no homogeneity of treatment (parasitoid
species) in relation to egg choice (p < 0.05), but it is homogeneous with
respect to the behaviours (p = 0.6022). A total of 684 transitions were
observed, both for choosing eggs and for behaviours, without taking into
account the treatment structure.
Next, we model egg choice, i.e., the the Y1 process, using the Cox model.
There was a significant effect of treatment (species) in the process of choos-
ing the eggs to be parasitised (p < 0.05). The transition probabilities are
shown in Figure 2, observing that the species T. basalis is less selective in
the process of oviposition, with higher probabilities of transition to self-
parasitisation.
Finally, we modelled the behaviours given choice, i.e. the Y2 | Y1 processes.
Given that the initial choice is the healthy egg, there were a total of 334
behaviour transitions, with 48 transitions to the initial choice. Also, we
found no significant effect of the difference in behaviour between species
in this condition of initial choice (p = 0.9438). Similarly, there was no
difference between behaviours when the initial choice was eggs parasitised
by T. basalis (p = 0.092) Nonetheless, if the initial choice was for eggs
parasitized by T.podisi, there were a total of 141 behaviour transitions,
with 29 transitions for new egg choices or walking. The T.basalis species
was the one that made the most transitions between behaviours and returns
to phase 1 of choice, demonstrating their behavioural fragility. For this
species, we found significant differences between the behaviors (p < 0.05).
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FIGURE 2. Transition probabilities in the process of egg choice by the two
species, where 1: healthy egg, 2: egg parasitised by T.podisi, 3: egg parasitised by
T.basalis and 4: walking or no egg choice.

Therefore, in practical terms, through the use of multi-state models, this
study reinforces the greater efficiency of T.podisi as a biological control
agent.
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Abstract: Prediction is a core task in statistics, machine learning and related
disciplines. Although predictive models have become increasingly more power-
ful, they typically exhibit statistical bias – a systematic misrepresentation of the
actual prediction point. While such models vary in approach and complexity,
ranging from simple linear models, to complex, nonlinear models such as neural
networks, the estimation problem that underlies the learning phase of the predic-
tive model can oftentimes be framed as a M -estimation problem. By leveraging
the rich statistical literature on M -estimation, we develop a novel approach to im-
proved, first-order unbiased prediction for black-box models that satisfy standard
M -estimation regularity conditions. Amongst others, this methodology encom-
passes the large class of predictive models where training is conducted through
optimisation of some loss function (e.g. maximum likelihood estimation or fitting
of neural networks). The method’s improved predictive performance is illustrated
in a simulation study for predicting success probabilities in logistic regression.

Keywords: M-estimation; estimating equations; adjusted score; logistic regres-
sion

1 Introduction

Consider the common prediction task where, upon observing a sequence
of variables of interest, y1, . . . , yk, yi ∈ Y ⊆ ℜ and covari-
ates,X = (x1, . . . ,xk)T, xi ∈ X ⊆ ℜp (i = 1, . . . , k) and given a new
data point x, one wishes to make a prediction about some function of the
corresponding unobserved data point y. The predictive task is captured by
a known parametric function g(x;θ), which takes as inputs the prediction
point x and a parameter θ ∈ Θ ⊆ ℜp. Let θ0 be the unknown parameter
that identifies the prediction of interest g(x;θ0). Typically, g(x;θ0) reflects

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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some parameter of the conditional distribution of an unobserved response
y given x, but this is immaterial for the development of the bias reduced
prediction (BRP) theory. The parameter estimation of θ0, or learning of
the predictive model g(x;θ0), can oftentimes be framed as a M -estimation

problem, that is, the estimator θ̂ is characterized as the root of a system
of equations

k∑
i=1

ψi(θ) = 0p , (1)

where 0p is a p-vector of zeroes, ψi(θ) = (ψi1(θ), . . . , ψip(θ))T, and

ψi(θ) = ψ(θ, yi,xi), ψ
i
r(θ) = ψr(θ, yi,xi), are estimating functions that

depend on θ and the observables yi,xi (i = 1, . . . , k).

2 Prediction as M -estimation

We use the idea of stacking redundant estimators, which themselves do
not constitute M -estimators, to define a new M -estimation problem (see
Stefanski and Boos, 2002), to reformulate the 2-step prediction as a
M -estimation problem by parametrizing the pointwise prediction π0 =
g(x;θ0). Adding the redundant estimating equation π − g(x;θ) at the ob-
servation level to (1) yields the simultaneous estimation problem

k∑
i=1

ψi(θ) = 0p

k {π − g(x;θ)} = 0

, (2)

for ϑ = (θT, π)T ∈ ℜp+1 with the solution ϑ̂ = (θ̂T, g(x; θ̂))T.

Hence, (2) recovers the plug-in prediction for g(x; θ̂). Writing
φi(ϑ) = (ψi(θ)T, π − g(x;θ))T defines a new M -estimation problem that
coincides with (2).

3 Bias Reduced prediction

Letting A(ϑ) be the bias-reducing adjustment function of Kosmidis and
Lunardon (2022), for (2), one gets the BRP equations

k∑
i=1

φi(ϑ) +A(ϑ) = 0p+1 . (3)

The solution to (3) yields first order bias unbiased for g(x;θ0) under the
regularity conditions Kosmidis and Lunardon (2022) for (1) and differen-
tiability and continuity conditions on the prediction function g(x; ·). One
can reduce the BRP approach to a 2-step estimation procedure, where in
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a first step, the original model tuning parameters θ are estimated by re-
duced bias M -estimation (RBM, see Kosmidis and Lunardon, 2022). The
solution is then plugged in the BRP function which is defined as the ex-
plicit solution of the (p+ 1)th equation of (3) for π given θ. If the first two
Bartlett identities are satisfied for the original M -estimation problem, as
would for example be the case in a fully specified model where the training
phase of (2) is conducted via maximum likelihood estimation, the reduced
bias M -estimator of θ reduces to the adjusted score equations estimator of
Firth (1993), which can be of use if the original estimator does not exist
(see for example Kosmidis and Firth, 2021).

4 Predicting success probabilities in logistic
regression

FIGURE 1. Top panels show the log of the absolute Monte Carlo estimates of the
prediction bias for BRP methods using adjusted score and empirical adjustment
approaches with full (solid line) and refined (dashed line) adjustment functions
and the MLE. Grey shaded areas are spanned by lines with slopes of (−3,−2),
(−2,−3/2) and (−3/2, 1) for adjusted score, empirical and MLE predictions.
Bottom panels show the estimated root mean squared prediction error.

We predict success probabilities in logistic regression and compare it to
standard maximum likelihood estimation using the simulation setup of
Puhr et al. (2017). For p = 11, n = 10× 2i, i = 1, . . . , 6, the design matrix
X and the prediction point x are held fixed. The parameter vector β0 is
chosen as in Puhr et al. (2017) to give expected predicted probabilities of
1/2 for their data generating process. x is chosen to achieve a predicted
probability of approximately 1/2. Finally, given X,x,β0 and for each n,
about 6.7×106 (to enusre that the Monte-Carlo error is two orders of mag-
nitude smaller than the estimated bias with high probability), independent
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FIGURE 2. Estimated distribution of the centred prediction error π̂ − µ(β0) for
MLE and BRP based predictions and various sample sizes.

copies of y are drawn and predictions were obtained using four variants of
the BRP method as well as the MLE plug-in predictions. Figure 1 shows
the decay of the log of the absolute bias for each prediction method as well
as the root mean squared error. The BRP methods decay at rates faster
than the O(n−3/2) rate guaranteed by theory, whereas the MLE predictor
decays at a rate that lies somewhere between n−1 and n3/2. All BRP meth-
ods have substantially lower bias than the MLE while keeping the RMSE
at a comparable level. The estimated density plots of the prediction error
π̂−µ(β0) distribution in Figure 2, where π̂ denotes the predicted probabil-
ity, illustrate that the asymptotic normality of the MLE based predictor is
preserved for the bias reduced predictions. The peaks at −1/2 and 1/2 for
the MLE and empirical adjustment functions based predictions come from
separated datasets, in which the infinite MLE and the RBM -estimates give
rise to predictions that are essentially zero or one (see Puhr et al., 2017).
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Abstract: New types of high-resolution (e.g. 1 Hz) animal movement data allow
for increasingly comprehensive biological inference, but method development to
meet the statistical challenges associated with such data is lagging behind. In
this contribution, we develop a new class of hidden Markov models specifically
tailored to address the requirements posed by high-resolution movement data,
in particular accounting for the very strong serial correlation. The models fea-
ture autoregressive components of general order in both the step length and the
turning angle variable, with lasso-based automated order selection.
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1 Introduction

High-resolution movement data, e.g. with sampling at 1 Hz, holds vast
potentials for ecological inference: behavioural modes and highly agile ma-
noeuvres such as foraging attempts can be more accurately identified, so-
cial interactions and predator-prey encounters can be measured, and the
effects of environmental stimuli can reliably be estimated (Nathan et al.,
2022). Figure 1 displays one such time series, showing step lengths derived
from the track of a tern species, a surface foraging seabird, observed at
30 Hz (Lieber et al., 2023). Short-lived foraging manoeuvres like hovering
or shallow plunge-dives, as indicated by troughs in the time series, can be
identified and further analysed using HMMs, assuming that each obser-
vation is associated with an underlying behavioural mode assumed to be
generated from an N–state Markov chain (McClintock et al., 2020).
However, a basic HMM would assume the observations within states to be
uncorrelated, which is not realistic for the data shown in Figure 1, where the
individual does indeed seem to switch between two (or more) behavioural
modes, but where within a behavioural mode, the step lengths are clearly
not independent over time, as they vary gradually. Basic HMM formulations

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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FIGURE 1. Bivariate time series of step lengths and turning angles of a tracked
tern (seabird) using aerial drone observations at 30 Hz (units are omitted).

do not acknowledge such strong within-state serial correlation, which can
have undesirable consequences for the associated statistical inference.
In this contribution, we develop a class of HMMs incorporating within-
state autoregressions specifically designed to meet the requirements of high-
resolution animal movement data. Our work extends a similar endeavour
by Lawler et al. (2019) in four ways: i) not only the step lengths, but also
the turning angles are modelled using autoregression; ii) the step length
distribution is modelled assuming a constant coefficient of variation; iii)
the autoregressive component is modelled using general lag p; iv) lasso reg-
ularisation is used to automatically select the order of the autoregression.

2 Model formulation

In movement ecology, the observed sequence of movement metrics — in
many cases the step lengths and turning angles between successive locations
— is commonly modelled conditional on an underlying, non-observable
sequence of states (typically interpreted as proxies of behavioural modes
such as resting, foraging, or travelling). The corresponding class of HMMs
involves i) an N–state Markov chain {St}t=1,...,T , here for simplicity as-
sumed to be homogeneous, defined by its initial state distribution δ =(
Pr(S1 = 1, . . . , S1 = N)

)
and transition probability matrix Γ = (γij),
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and ii) suitable state-dependent distributions for the observed movement
metrics (Zucchini et al., 2016).
We consider the bivariate time series {Xt}t=1,...,T , Xt = (Xstep

t , Xturn
t ),

with Xstep
t the step length and Xturn

t the turning angle at time t. We
assume the step lengths to follow a state-dependent gamma distribution,

Xstep
t | St = j ∼ Γ (µt,j , σt,j) , (1)

where the state-dependent mean µt,j fluctuates around a steady-state mean
µj according to an AR(pj) process:

µt,j =

pj∑
k=1

ϕstepj,k x
step
t−k +

(
1−

pj∑
k=1

ϕstepj,k

)
µj .

The state-dependent standard deviation σt,j is calculated as σt,j = ωjµt,j ,
with the constant coefficient of variation ωj a parameter to be estimated.
For the turning angles, the circular nature of the variable needs to be
taken into account. This is achieved assuming a von Mises state-dependent
distribution,

Xturn
t | St = j ∼ von Mises (µt,j , κj) , (2)

formulating an AR(pj) process on the mappings of the turning angles to
their corresponding values on the unit circle:

µt,j = Arg

( pj∑
k=1

ϕturnj,k exp
(
i xturnt−k

)
+
(

1−
pj∑
k=1

ϕturnj,k

)
exp (i µj)

)
.

For both the step lengths and the turning angles, ϕj,k are the within-state
autoregressive parameters for state j and time lag k.
Parameter estimation is conducted by optimising the conditional likeli-
hood, for each state j conditioning on the first pj observations. In order
to automate the choice of the state-dependent autoregressive order pj , we
additionally include a lasso penalty on the autoregressive coefficients, re-
sulting in the partially penalised conditional likelihood

L = δP(xstep1 , xturn1 )ΓP(xstep2 , xturn2 ) · . . . · ΓP(xstepT , xturnT )1t

− λ
( N∑
j=1

pj∑
k=1

|ϕstepj,k |+
N∑
j=1

pj∑
k=1

|ϕturnj,k |
)
, (3)

with a complexity penalty λ ≥ 0. The diagonal matrices P(xstept , xturnt )
comprise the products of the state-dependent gamma and von Mises den-
sities as implied by (1) and (2) on the diagonal, for each state j replacing
the initial pj state-dependent densities by ones. Following Oelker and Tutz
(2017), to obtain a differentiable objective function the L1 norm ∥·∥ in the
penalty is approximated by

√
(·+ ϵ)2, with a small positive ϵ.
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3 Case study

We consider the tern movement data already shown in Figure 1, downsam-
pled to 1 Hz to avoid numerical instability. All used data is published in
Lieber et al. (2022). In our analyses we use the bird with ID Tern-h2-51. The
model described above, with N = 2 states, was fitted using maximisation
of the partially penalised conditional likelihood (3), allowing for a maxi-
mum autoregression lag of 5 in each state. Figure 2 displays the trajectories
of the autoregression coefficients ϕj,k for increasing complexity penalty λ,
indicating successful lasso-type variable selection. While the AIC selects a
model featuring autoregressive terms for each state and variable, the BIC
favours a model with autoregressive terms in state 2 only. The latter makes
intuitive sense as state 2 is associated with foraging manoeuvres and high
tortuosity, which requires the autoregressive component for capturing the
current curvature.
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FIGURE 2. Trajectories of the autoregression coefficients for increasing complex-
ity penalty λ > 0. For clarity, the legend comprises only those coefficients that
based on information criteria should be included in the model and differ substan-
tially from zero.

To further illustrate model adequacy, Figure 3 shows the original movement
track (top) as well as simulated tracks from a basic HMM (bottom left)
and the autoregressive HMM selected by the BIC (bottom right). The latter
seems to be able to produce more pronounced circles than a standard model
formulation, leading to a visually better model fit when compared to the
real data.
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FIGURE 3. Comparison of real data (top) to data simulated from a basic HMM
fitted to the data (bottom left) and an autoregressive HMM (bottom right). In
the latter case, the choice of λ ≈ 31.6 corresponds to the best-scoring model
regarding BIC (cf. Figure 2).
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Abstract: Boosting distributional copula regression is a flexible tool to jointly
model multivariate outcomes, in which all parameters of the joint distribution
can be related to covariates via additive predictors. Estimation via model-based
boosting allows to fit these complex models also to high-dimensional data (p > n).
Additionally, boosting can incorporate data-driven variable selection simultane-
ously for all parameters of the marginal distributions as well as for the associa-
tion parameter of the copula. However, as known from univariate (distributional)
regression models, the boosting algorithm tends to select too many variables,
particularly for low-dimensional settings (p < n). To counteract this behavior,
we adapt a recent deselection approach for statistical boosting to multivariate
copula regression models to deselect base-learners with only a negligible impact
on the overall performance of the model. We illustrate our approach by jointly
modelling LDL and HDL cholesterol based on large UK Biobank genotype data.

Keywords: Model-based boosting; Variable selection; GAMLSS; Copula regres-
sion.

1 Introduction

In distributional copula regression, potentially different marginal response
distributions can be combined by an appropriate copula function that de-
fines the dependency structure between the outcomes for multivariate mod-
elling. Within the framework of generalized additive models for location,
scale and shape (GAMLSS, Rigby and Stasinopoulos, 2005), all parameters
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Strömer et al. 301

of the distributional copula regression model (i.e. the distribution param-
eters of the marginals and the dependency parameter) are modelled by
an additive predictor incorporating different effect types for the covariates
(Klein and Kneib, 2016). In combination with component-wise gradient
boosting, we can incorporate data-driven variable selection for potentially
high-dimensional data, which is controlled by the number of boosting iter-
ations (Mayr et al., 2012). However, despite these advantages, the boosting
algorithm still tends to select too many variables (including ones which
are non-informative or have a very low signal), which occurs particularly
for low-dimensional settings. In these situations, we can observe a slow
overfitting behavior, which results in a later stopping of the algorithm and
therefore a larger set of included base-learners that might have only minor
importance. As a result, we are faced with an unnecessary large model,
that might be performing good for prediction but is difficult to interpret.

2 Deselection of base-learners

We address this issue by adapting the deselection approach by Strömer
et al. (2022) for boosting distributional copula regression. The pragmatic
and simple idea is to start with a classical boosted model tuned by cross-
validation or resampling techniques to determine the optimal stopping it-
eration mstop to achieve high prediction accuracy. Then, the base-learners
and variables that were selected but only have a minor impact on the model
are identified and are deselected. Afterwards, the model is boosted again
only with the remaining ones. The importance of a base-learner j in the
deselection approach is measured via the risk reduction after mstop itera-
tions:

Rj =

mstop∑
m=1

I(j = j∗[m])(r[m−1] − r[m]), j = 1, . . . ,
∑

pk,

where I denotes the indicator function and j∗[m] is the selected base-learner
in iteration m. Furthermore, r[m−1] − r[m] represents the risk reduction in
iteration m, for risks r[m] and r[m−1] at iterations m and m− 1. Note that
in the case of distributional copula regression, all distribution parameters
are considered together and each parameter θk, k = 1, . . . ,K may depend
on a different number of variables pk. For a given threshold τ ∈ (0, 1), we
deselect base-learner j if

Rj < τ · (r[0] − r[mstop]),

where r[0] − r[mstop] represents the total risk reduction and Rj denotes the
attributable risk reduction of base-learner j. In other words, only base-
learners which contribution Rj to the total risk reduction is larger than
the relative τ threshold (e.g., 1%, Strömer et al, 2022) will remain in the
model after the deselection step.
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3 Simulations for comparison with competitors

We conducted a simulation study (based on a similar set-up as in Hans et
al., 2023) to investigate and compare the variable selection properties, the
predictive performance and the computation time of the classical boosting
algorithm with the adapted deselection approach. As additional competi-
tors, we also considered stability selection (Meinshausen and Bühlmann,
2010) and probing (Thomas et al., 2017) to benchmark our results. For
a low-dimensional setting, the classical boosted model selected many non-
informative variables for every distribution parameter. All approaches effec-
tively reduced the number of false positives. Probing and stability selection
did not select all informative variables in each simulation run, whereas the
deselection approach maintained all informative variables in the model. In
a high-dimensional setting, fewer non-informative variables were included
in the boosted models. The approaches performed similar as in the low-
dimensional setting and reduced the number of selected non-informative
variables almost completely.
A comparison of the negative log-likelihood for the low-dimensional and
high-dimensional setting showed that stability selection and deselection re-
sulted in a slightly better predictive performance than the classical boosted
model. Probing, on the other hand, led to a lower predictive performance.
In terms of computation time, probing is the fastest and stability selection
takes much more computational resources than the classical boosted model
or the deselection approach.

4 Joint modelling of LDL and HDL cholesterol

We illustrate our deselection approach on high-dimensional genomic cohort
data from the UK Biobank, modelling the joint genetic predisposition for
two continuous phenotypes, LDL and HDL cholesterol, in dependence of
different genetic variants. For both phenotypes, the 1000 variants (typi-
cally single nucleotide polymorphisms) with the largest marginal associ-
ations with each of the two phenotypes were selected in a pre-screening
process. Overall, the data set includes 20,000 sampled observations and
1,179 variants (803 variants selected for both phenotypes). The log-logistic
distribution was considered as marginal distribution for both phenotypes
and the Gumbel copula was used for modelling the dependency structure
based on the comparison of the predictive risk. All variants were included
with simple linear models as base-learners.
Figure 1 illustrates the resulting estimated absolute coefficients for every
distribution parameter (similar to Manhattan plots). The classical boosted
model selected several variants for each distribution parameter. After the
deselection approach with τ = 0.01, only some variants for µ1 and µ2 are
left. This means that with the deselection approach we can not only reduce
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FIGURE 1. Manhattan-type plots (chromosomes on x-axis) for the absolute co-
efficients of boosted copula regression for the joint analysis of LDL and HDL
cholesterol. The dark blue dots are the selected variants by classical boosting, the
lighter blue points are the remaining variables after the deselection approach.

the included variables and obtain a much sparser model with a potentially
simpler interpretation: In this case the approach also further reduces the
overall complexity by completely deselecting all variants of distribution
parameters resulting in two simple univariate models for both phenotypes.
Furthermore, the deselection leads to a comparable predictive performance
on test data as the classical boosted model.

5 Conclusion

We presented a pragmatic deselection approach for boosting multivariate
distributional copula regression models. The new deselection approach re-
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sults in much sparser models and can even lead to more simple univariate
regression models, reducing the complexity of the overall analysis. The
prediction accuracy usually does not improve but can lead to comparable
accuracy as the classical boosted model with less predictors. Consequently,
the interpretability of resulting prediction models is improved.
The presented deselection procedure is controlled via a threshold value τ ,
which represents the minimum amount of total risk reduction which should
be attributed to a corresponding base-learner in order to avoid deselection.
This can be interpreted as a threshold-value for the importance of the par-
ticular predictor variable. In the simulation study, a threshold of τ = 0.01
(i.e. 1% of total risk reduction) was considered to be appropriate. However,
depending on the research question and the context of the problem, the
choice of τ is a trade-off between more complex models with the highest
prediction accuracy and a sparser, more interpretable model with poten-
tially reduced prediction accuracy.
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Abstract: During an epidemic, the daily number of reported infected cases or
deaths is often lower than the actual number due to reporting delays. Nowcasting
aims to estimate the cases that have not yet been reported and combine it with the
already reported cases to obtain an estimate of the daily cases. In this paper, we
present a fast and flexible Bayesian approach to nowcasting combining P-splines
and Laplace approximations. The main benefit of Laplacian-P-splines (LPS) is
the flexibility and faster computation time compared to Markov chain Monte
Carlo (MCMC) algorithms that are often used for Bayesian inference. In addition,
it is natural to quantify the prediction uncertainty with LPS in the Bayesian
framework, and hence prediction intervals are easily obtained. Model performance
is assessed through simulations, and the method is applied to the COVID-19
mortality and incidence cases in Belgium.

Keywords: Nowcasting; Laplacian-P-splines; Epidemic; COVID-19; Reporting
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1 Introduction

Nowcasting is a term used for estimating the occurred-but-not-yet-
reported-events (Donker et al. (2011); van de Kassteele et al. (2019)). In
epidemiology, real-time updates of new symptomatic/infected individuals
are helpful to assess the present situation and provide recommendations

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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for rapid planning and for implementing essential measures to contain an
epidemic outbreak. The exact number of new daily cases is frequently sub-
ject to reporting delays, resulting in underreporting of the real number of
infected individuals for that day. The main goal of nowcasting is to esti-
mate the actual number of new cases by combining the (predicted) not-yet-
reported-cases with the already reported cases. In 2019, van de Kassteele
et al. proposed a nowcasting model in which the number of cases are struc-
tured in a two-dimensional table (with calendar time as the first dimension
and delay time as the second dimension), yielding the data matrix used as
an input in the model. The reporting intensity is assumed to be a smooth
surface and is modelled using two-dimensional P-splines.
In this paper, we work on the method of van de Kassteele et al. (2019)
by proposing a new nowcasting methodology based on Laplacian-P-splines
(LPS) in a fully Bayesian framework. We build on the work of Gressani
and Lambert (2021) to extend the LPS methodology to nowcasting. This
approach combines the flexibility of P-splines (Eilers and Marx (1996))
and faster computational time (compared to MCMC approaches) induced
by Laplace approximations. Therefore, given this computational benefit,
it can be a helpful tool in the daily monitoring of new cases during an
epidemic period. To evaluate the (predictive) performance of our method,
a simulation study is implemented, and performance measures are reported
such as the mean absolute percentage error (MAPE) and prediction interval
coverage. Finally, we apply our method to the COVID-19 incidence cases
and mortality data in Belgium.

2 Methodology

Let yt,d denote the number of cases (infections or deaths) that occurred at
time t = 1, 2, ..., T (corresponding to the calendar day) and reported with
a delay of d = 0, 1, 2..., D days. The information on cases can be summa-
rized in matrix form (denoted by Y) with rows as the time dimension and
columns corresponding to the delay. The not-yet-reported cases correspond
to (t, d) combinations satisfying t > T −d. The main objective is to predict

the total number of cases, yt =
∑D
d=0 yt,d , for t = T − (D − 1), . . . , T for

which the nowcasted and already reported cases can be combined.
Let D := y = (y1, y2 . . . , yn)′ denote the vector of the observed number of
cases by stacking the columns of matrix Y for the reported cases, where
each entry corresponds to each (t, d) combination of reported cases yt,d.
The model assumes that the number of cases either follows a Poisson or
negative binomial (NB) distribution with mean µt,d > 0. Following van de
Kassteele et al. (2019), the (log) mean number of cases is modeled with
two dimensional B-splines:

log(µt,d) = β0 +

KT∑
j=1

KD∑
k=1

θj,kbj(t)bk(d) +

p∑
l=1

βlzl(t, d),
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where β0 is the intercept; bj(·) and bk(·) are univariate B-splines basis func-
tions specified in the time and delay dimensions, respectively; and zl(t, d)
represents additional covariates with regression coefficients βl. In matrix
notation:

log(µ) = Bθ + Zβ, (1)

where B = BD ⊗ BT is the Kronecker product of B-splines matrices BT
(time) and BD (delay), Z is the design matrix (including intercept) for
additional covariates, and vectors θ and β are the associated parame-
ters to be estimated. Let Dt = Dm

t and Dd = Dm
d denote the mth or-

der row-wise and column-wise difference matrix. Define the penalty ma-
trices Pt = D

′

tDt + δIKT
and Pd = D

′

dDd + δIKD
, where δ is a small

number (say δ = 10−6), to ensure that Pt and Pd are full rank and
invertible. To formulate the Bayesian model, we assumed Gaussian pri-
ors on β and θ (Lang and Brezger, 2004), that is, β ∼ N(0, V −1

β )

and (θ|λ) ∼ N(0,P−1(λ)) with Vβ = ζIp+1 (small ζ, e.g. ζ = 10−5),
λ = (λt, λd)

′ is the penalty vector that controls the roughness of the fit
and P(λ) = λt(IKD

⊗ Pt) + λd(Pd ⊗ IKT
) the global penalty matrix. Fur-

thermore, denote by X = (B,Z) the global design matrix, ξ = (βT,θT)T

the latent parameter vector and Qλ
ξ =

[
Vβ 0
0 P(λ)

]
the precision matrix

for ξ. The full Bayesian (negative binomial) model is then summarized as
follows:

(yi|ξ) ∼ NB(µi, ϕ) with log(µ) = Xξ,

(ξ|λ) ∼ Ndim(ξ)(0, (Q
λ
ξ )−1),

(λt|δt) ∼ G
(
ν

2
,
νδt
2

)
,

(λd|δd) ∼ G
(
ν

2
,
νδd
2

)
,

δt ∼ G(aδ, bδ),

δd ∼ G(aδ, bδ),

ϕ ∼ G(aϕ, bϕ),

where ϕ is an overdispersion parameter and G(·) denotes the Gamma den-
sity. The posterior density of ξ conditional on the penalty vector λ is ap-
proximated by a Gaussian density, denoted by p̃G(ξ|λ,D) = N (ξ̂λ, Σ̂λ),
using a Newton-Raphson algorithm. Let η = (λt, λd, δt, δd)

T denote the
vector of hyperparameters. Following Rue et al. (2009), the marginal pos-

terior of η can be approximated as p̃(η|D) ∝ L(ξ;D)p(ξ|η)p(η)
p̃G(ξ|η,D)

∣∣∣
ξ=ξ̂λ

where

L(ξ;D) denotes the likelihood function. The posterior mode (obtained via
Newton-Raphson) is then used as a point estimate for the penalty vector.
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3 Results

A simulation study is implemented in order to evaluate the predictive per-
formance of the proposed method and several nowcast dates are considered.
The results of the simulation for the negative binomial model show that the
mean absolute percentage error (MAPE) on the nowcast day typically falls
within the range of 30% to 40%. This is reasonable considering that we do
not have data available on the nowcast day because all cases have a delay of
at least one day. Furthermore, the prediction interval coverage ranges from
90% to 94%, which is close to the 95% nominal level. In the case of the
Poisson model, the MAPE results are comparable to those of the negative
binomial model. However, the prediction interval coverage is lower, with an
accompanying narrower interval width, ranging approximately from 20% to
60%. This is because the Poisson model tends to underestimate the vari-
ability when there is overdispersion in the data.
Moreover, we apply our method to COVID-19 mortality data in Belgium.
The nowcast predictions are fairly close to the observed cases for both
Poisson and negative binomial models. In addition, all the observed cases
fall within the prediction interval. The prediction interval is wider for the
negative binomial model. Figure 1 shows the nowcast plot for the mortality
data with different nowcast dates using the negative binomial model. For
the COVID-19 incidence data, which involves a higher number of cases,
the Poisson assumption failed to contain the observed incidence within the
prediction interval, as opposed to the negative binomial model. This aligns
with our simulation results, demonstrating that the Poisson assumption
indeed yields a narrower interval.
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FIGURE 1. Nowcast plot for mortality data with different nowcast dates using
negative binomial model. Blue - reported cases ; Gray - Not-yet-reported cases;
Orange - nowcast with prediction interval.
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Abstract: Distributional soft trees offer a flexible and effective way to model full
probabilistic regression models. On the one hand, unlike classical regression trees
and forests, which use hard splits to partition data, soft trees provide smooth
estimates through soft splits, leading to improved performance in many cases
due to reduced approximation error. On the other hand, compared to structured
additive distributional regression, distributional soft trees allow for more com-
plex interactions of possibly high-dimensional feature vectors. In this article, we
introduce a boosted version of a distributional adaptive soft regression tree that
can be applied to very large datasets while performing variable selection on the
fly. We demonstrate the strong predictive capabilities of this method through a
complex regression problem involving the spatial mapping of recent child anaemia
risk data in sub-Saharan Africa. Our results further highlight the potential of the
proposed boosting method in large-scale complex regression problems.

Keywords: Boosting; GAMLSS; soft trees; variable selection.

1 Introduction

Distributional regression involves modeling the entire distribution of a re-
sponse variable, rather than just its mean or median. This can provide a
more comprehensive understanding of the relationship between covariates
and the response, as well as enable more accurate probabilistic predictions
beyond point forecasts. While there are various methods for obtaining a
distributional model, this paper focuses on the class of structured addi-
tive distributional regression, also known as generalized additive models
for location, scale, and shape (GAMLSS; Rigby and Stasinopoulos, 2005).
GAMLSS can model every parameter of an arbitrary parametric target

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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distribution through input features, resulting in a probabilistic prediction
model.
Distributional (adaptive) soft regression trees (DAdaSoRT; Umlauf and
Klein, 2022) offer a flexible and effective way to model full probabilistic re-
gression models, and have recently been shown to be a promising alternative
to structured distributional methods. One key advantage of these DAda-
SoRT, which embed classical soft trees into the distributional framework of
GAMLSS, is the smoothness of their estimates on respective distributional
parameters, which is achieved through the use of soft splits rather than
hard splits. This smoothness can reduce approximation error and improve
performance in many cases. In fact, DAdaSoRT have been shown to out-
perform both classical GAMLSS and full probabilistic distributional forests
(DF; Schlosser et al., 2019) in certain situations. Figure 1 shows a simple
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FIGURE 1. Simulated 2D data: Shown are the estimates for E(Y |x) of a DF
using 2000 trees (left) and a DAdaSoRT (right). The solid red lines represent
the mean estimates, and the red shaded areas depict the 5% and 95% estimated
quantiles of E(Y |x) . The dashed black lines show the true mean function.

2D regression example with a classical DF compared to a DAdaSoRT. Al-
though DF is estimated with 2000 trees, the resulting estimate is quite
wiggly and tends to overfit the data compared to the DAdaSoRT in the
right panel of Figure 1. As mentioned before, the reason for this is mainly
the hard splitting rule of classical trees and forests, which favors an approx-
imation error that can even be amplified when modeling high-dimensional
covariate interactions. The example also illustrates that DAdaSoRT can
represent both smooth transitions and abrupt jumps of a function.
This article presents a new boosting algorithm designed to further improve
the flexibility of distributional modeling using soft trees. Compared to the
estimation method of Umlauf and Klein (2022), the boosting algorithm
needs far less tuning, can be applied to very large data sets and selects the
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most relevant features in the data on the fly . The latter capability is partic-
ularly useful as it helps to reduce the complexity of the modeling process,
favours sparse and thus often better interpretable models and improves the
accuracy of the results.

2 Model and Boosting Algorithm

DAdaSoRTs are introduced in Umlauf and Klein (2022), and we follow
their notation for simplicity. Now, suppose there is data y = (y1, . . . , yn)⊤,
such that for each output yi, i = 1, . . . , n there is a q-dimensional feature
vector xi = (xi1, . . . , xiq)

⊤ available and X = (x1| . . . |xn)⊤ is the n×q fea-
ture matrix. Assume y ∼ Dy (h1(θ1) = η1, h2(θ2) = η2, . . . , hK(θK) = ηK),
where Dy denotes a parametric distribution for the response variable y
and hk(·) are monotonic and twice differentiable link functions mapping to
the distributional predictors ηk which are modeled by soft trees. Follow-
ing Umlauf and Klein (2022), we use adaptive soft tree structures given

by ηk ≡ fk(X) = βk,0 +
∑Jk
j=1 Pk,j(X,Ω(k,j))βk,j ,where for k = 1, . . . ,K,

Pk,j(·) represent the path probabilities from a soft splitting rule, Ω(k,j),
βk,0 and βk,j are weights that need to be estimated and Jk is the number
of “basis functions” of fk(·) obtained from left and right soft splitting.
In contrast to the multivariate soft splitting of Umlauf and Klein (2022), we
use an univariate soft split for Pk,j(·), to automatically incorporate variable
selection in the final DAdaSoRT by selecting only the best performing
feature xq according to the current log-likelihood contribution. Specifically,
to set up a boosting type algorithm, we specify at each iteration t = 0, . . . , T
and for each distributional predictor ηk the updating equation

η
[t+1]
k = η

[t]
k + ν · f [t]k (X), (1)

where ν is a step length parameter (e.g., ν = 0.1). Therefore, predictors
are improved slowly while each tree is estimated with maximum likelihood

using offsets η
[t]
k . In addition, the depth of the trees is kept small, which is a

tuning parameter, so that a single f
[t]
k (·) only contributes a small amount to

the overall model fit, similar to Bayesian additive regression trees (BART;
Chipman et al. 2010). Moreover, instead of using all observations n for
fitting a single tree in iteration t we only use a randomly selected subset
s[t] ⊂ {1, . . . , n} of the data, i.e., each tree is build using (possibly) different
data batches Xs[t] . This leads to a regularization such that convergence of
the algorithm is achieved when the log-likelihood evaluated on the batches
becomes stationary around a certain level, i.e., in most applications, only
enough boosting iterations T need to be provided without further tuning.
In addition, it can be applied to very large data sets since the batchwise up-
dating requires only a relatively small computational cost. We call this novel
method batchwise boosting DAdaSoRT. An implementation is provided in
the R package softtrees (Umlauf, 2023), see help("BB-DAdaSoRT").
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3 Child Anaemia Risk in Sub-Saharan Africa

Anaemia is a major health issue in low- and middle-income countries, par-
ticularly in sub-Saharan Africa, where over 50% of children under five are
affected. We analyze haemoglobin (HgB) in a yet unexplored large-scale
dataset with > 340k observations from Demographic and Health Surveys.
The data include climate, environmental and geospatial data. To perform
model calibration checks, we split the data randomly into training and
testing sets, with 80% of the data allocated to training and 20% to testing.
We then benchmark the performance of a classical Bayesian additive model
for location, scale, and shape (BAMLSS, Umlauf et al., 2018) with our
proposed DAdaSoRT model. Notably, DAdaSoRT exhibited a considerably
faster runtime, requiring approximately 6.5 hours to process 200 batches of
10000 data points, compared to approximately 65 hours for the Bayesian
GAMLSS with 8000 MCMC iterations. Ultimately, we found that a model
with skew exponential power type 3 distribution as implemented in the
gamlss.dist package (Stasinopoulos and Rigby, 2022), achieved the best
performance based on the out-of-sample continuous rank probability score
(CRPS). Without further tuning, the skill score of this model, compared
to a simple Gaussian intercept-only model, demonstrated an 11.13% im-
provement, while the skill score of the best-fitting BAMLSS model yielded
an 11.05% improvement, indicating a marginal enhancement. However, this
outcome is particularly promising as the identification of interactions is au-
tomated in our proposed DAdaSoRT model, unlike in BAMLSS. Addition-
ally, compared to conventional distributional trees and forests, estimation
with our approach is significantly more efficient and currently not feasible
with available implementations of distributional trees or forests.
Figure 2 displays the out-of-sample quantile residuals of the final model.
The histogram indicates approximately normally distributed residuals,
while the worm plot reveals slight, yet statistically significant deviations
from a zero mean for higher estimated quantiles. Overall, the model ap-
pears to be well calibrated, even on the test data.
The left panel of Figure 3 presents the log-likelihood contributions for each
of the selected variables, indicating that land type and the age of the child
in months are the two most influential factors. In the right panel, we depict
the estimated spatial risk for Pr(HgB < 110 g/L), illustrating substantial
variations across the continent. Figure 4 showcases the marginal effects
on Pr(HgB < 110 g/L). All the figures related to Pr(HgB < 110 g/L)
demonstrate the exceptional ability of the proposed DAdaSoRT model to
accurately approximate both sharp and smooth transitions. For instance,
we observe sharp regional changes in the map of Figure 3 in contrast to
the very smooth estimated effects in Figure 4.
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FIGURE 2. Model calibration plots using out-of-sample quantile residuals.
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risk for female infants at 30 months of age in 2020 (right).
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Abstract: Multivariate spatial models for areal count data offer advantages over
univariate counterparts as they reduce estimation error and unveil underlying cor-
relations between the phenomena under study. However, assessing relationships
between the responses and covariates of interest suffers from the challenging prob-
lem of spatial confounding, that is, the difficulty in disentangling the effects of
the observed covariates and the spatial random effects. Though there is now a
corpus of research about this problem, no definitive solution has been reached.
In this work, we propose a modification of the so called spatial+ method in the
multivariate framework. In particular, we use M-models and extend and modify
the spatial+ method to the multivariate setting to estimate the linear relation-
ship between the responses and some covariates. We use the proposal to analyse
two form of crimes against women in Uttar Pradesh, India, and their relationship
with some socio-demographic covariates.

Keywords: Crimes against women; Spatial confounding; M-models; Spatial+.

1 Introduction

Violence against women is a major problem in many countries where cul-
tural traditions favour gender inequality. This is the case of India, one of
the most populated countries in the world, where crimes against women
are on the rise.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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Univariate spatial disease mapping models are crucial to visualize the spa-
tial patterns of crimes against women, but a multivariate approach allows
establishing relationships between them. The coregionalization framework
derived by Mart́ınez-Beneito (2013) covers many of the multivariate pro-
posals in the literature. However, it may be computational prohibitive and
an alternative reformulation known as M-models (Botella-Rocamora et al.,
2015) has been developed.
When covariates enter in the model, an important challenge appears.
Namely, the impossibility of separating the fixed effects from the spatial
random effects. This is known as “spatial confounding” and it has been
considered as a multicollinearity problem (Reich et al., 2006) resulting in
biased estimates of the fixed effects. Various procedures have been proposed
to alleviate spatial confounding. Here we focus on the spatial+ method
(Dupont et al., 2022), consisting on removing spatial dependence of the
covariates. More precisely, we consider M-models incorporating covariates
and we modify the spatial+ approach to remove the spatial structure of
the covariates and fit the multivariate models in a one-step procedure. We
use the proposal to analyse two form of crimes against women, rapes and
dowry deaths, in Uttar Pradesh (Vicente et al., 2020) and to asses their
relationship with some sociodemographic covariates. Model fitting and in-
ference is carried out using integrated nested Laplace approximations (Rue
et al., 2009).

2 M-models

Let Yij and Eij denote the number of observed and expected cases, re-
spectively, in the ith small area (i = 1, . . . , I) for jth crime (j = 1, . . . , J).
Conditional on the relative risk Rij , Yij is assumed to follow a Poisson
distribution

Yij |Rij ∼ Poisson(µij = EijRij) and logµij = logEij + logRij .

The log-risk is modelled as

logRij = αj + βjxi + θij , (1)

where αj is the intercept of jth crime, βj is a crime-specific regression

coefficient related to the covariate of interest X = (x1, . . . , xI)
′
, and

θij is the spatial effect of area i and crime j. To understand how M-
models incorporate spatial dependence within each crime and induce cor-
relation between different crimes, we rearrange the spatial effects in a
matrix Θ = (θ(1), . . . ,θ(J)) = {θij : i = 1, . . . , I; j = 1, . . . , J} where

θ(j) = (θ1j , . . . , θIj)
′
. Then, Θ is expressed as

Θ = ΦM ,
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where Φ is a matrix whose columns are independent and follow spatially
correlated distributions, and M is a nonsingular and arbitrary J×J matrix
that induces dependence between the columns of Θ. Entries of M can
be interpreted as coefficients in the regression of log-relative risks on the
columns of Φ. Hence, they can be interpreted as fixed effects and a N(0, σ2)
prior with large fixed variance σ2 is a sensible option for them. This is
equivalent to assign M

′
M ∼ Wishart(J, σ2IJ) (see Botella-Rocamora et

al., 2015).

3 One step spatial+ model

Spatial+ (Dupont et al., 2022) is a two step procedure designed to reduce
bias in spatial models by eliminating the spatial dependence of the co-
variates. The first step consists in removing the spatial dependence of the
covariate through a model. Then, in the second step, the spatial model (1)
is fitted replacing the covariate by the residuals obtained in the first step.
Here, we modify the procedure to remove the spatial dependence of the
covariate and fit the spatial model in one single step. In more detail, we
express the covariate X as a linear combination of the eigenvectors U (i),
i = 1, . . . , I of the random effects precision matrix. That is

X = δ1U
(1) + · · ·+ δIU

(I).

Given that the eigenvectors corresponding to the lowest non-null eigen-
values are responsible for the collinearity between the fixed and random
effects, we split the covariate into two parts X = Z + Z

′
,where Z

′
com-

prises large-scale eigenvectors and Z contains the rest. More precisely, Z
′

is
formed by at least 5% and at most 20% of the large-scale eigenvectors (Ur-
dangarin et al., 2022). Finally, the M-model is fitted replacing the covariate
X in (1) by its spatially decorrelated part Z as

logRij = αj + βjzi + θij . (2)

4 Results

We fit models (1) and (2) to study rapes and dowry deaths in Uttar Pradesh
in 2011. Specifically, our interest relies on the association between both
crimes and the socio-demographic covariate sex ratio (number of females
per 1000 males). Here we consider an intrinsic (ICAR) and the BYM2 prior
for the spatial random effects, and six large-scale eigenvectors in Z

′
. Table

1 shows the fixed effect estimates. It can be observed that the estimates
are different with the multivariate spatial model (1) and the multivariate
spatial+ model (2). In addition, the posterior standard errors are smaller
with the spatial+ approach. The association between sex ratio and dowry
deaths is significant, while it is not significant for rapes.
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TABLE 1. Posterior means, posterior standard deviations and 95% credible in-
tervals of the sex ratio coefficient for rapes (βrape) and dowry deaths (βdowry).

Φ Model mean sd 95% CI

βrape ICAR (1) -0.1560 0.1050 -0.3640 0.0510
(2) -0.0750 0.0680 -0.2090 0.0590

BYM2 (1) -0.1800 0.0990 -0.3720 0.0150
(2) -0.0680 0.0670 -0.2000 0.0650

βdowry ICAR (1) -0.1920 0.0600 -0.3080 -0.0720
(2) -0.0940 0.0410 -0.1740 -0.0130

BYM2 (1) -0.2500 0.0590 -0.3620 -0.1310
(2) -0.1100 0.0430 -0.1940 -0.0260
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Abstract: An increasing number of clinical trials are adapting the use of elec-
tronic patient-reported outcomes (ePRO) in their study protocol and conduct.
Compared to the traditional data from multicenter clinical trials, ePRO data
has no visit label and are more consistent as longitudinal time series. To extend
central statistical monitoring in traditional clinical studies, we propose a new
methodology for testing the anomalies using time series concepts and a mixed-
effects model for continuous outcomes. The methods are divided into two modules
that address two aspects of continuous outcomes: the first and second moment
of the variable.

Keywords: ePRO data; Multicenter clinical trials; Mixed-effects model.

1 Introduction

A classic method of central statistical monitoring in longitudinal clinical
studies is to use statistical tests to generate p-values, indicating potential
outlying centers with abnormal data patterns. Examples of such methods
are proposed by Desmet et al. (2014).
However, traditional clinical trials have scheduled visits and thus have lim-
ited time points. With electronic patient-reported outcomes (ePRO), pa-
tient data can be collected daily or even multiple times per day. The time
evolution of endpoint variables behaves more like a time series. Therefore,
the goal of this article is to extend the method to adapt to the large number
of time points. Although scarce in the field of pharmaceutical monitoring,
similar concepts with time series data can be seen in fields such as econo-
metrics, following the work of Rousseeuw et al. (2019) and Olsen et al.
(2021).

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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2 Test on the mean and variability of a continuous
ePRO variable

Consider a randomized clinical trial with I centers and J patients. Suppose
patients are required to report a continuous outcome x (e.g. heart rate)
electronically every day starting at their baseline visit until the end of
their treatment. The expected duration is denoted as T . Let xijt be the
outcome of patient j in center i at time t.
The measurements xijt can be seen as a time series for patient j if the pa-
tient reports the outcome x repeatedly over time. If the patient’s treatment
during the clinical trial has an impact on the measured continuous outcome
over time, then we would expect a general trend over time T . Otherwise,
we can reasonably assume the time series xijt is approximately stationary.
A conventional choice for modeling longitudinal data is using a mixed-
effects model:

xijt = µ(x, t) + γi + ϵijt

where µ(x, t) is a function that depends on the time t and outcome variable
x, γi which follows N(0, ρ2c) is the random effect of center i, and ϵijt which
follows N(0, ρ2r) is the residual error for each outcome record of patient j
at time t.
Based on the fitted model, µ(x, t) can take three possible forms:

µ(x, t) = µ+ bt+ cxij(t−1) or µ(x, t) = µ+ bt or µ(x, t) = µ

If µ(x, t) follows the first form, then it is assumed that the endpoint variable
has a time trend and it is autocorrelated with the lag-1 term (xij(t−1)). Oth-
erwise, the endpoint variable may have only a general time trend or no time
effects at all. These possible models are selected using a combination in-
dex of AIC (Akaike Information Criterion) and BIC (Bayesian Information
Criterion). After selecting the best model, the original endpoint variable is
modified by subtracting the fixed effect and the mean time trend:

yijt = xijt − µ(x, t)

2.1 Estimate p-values for test on the means

The sample mean of the modified variable y∗i = 1
Ni

∑Ni

j,t yijt in each center

i, follows a normal distribution N

(
0,
√
ρ2c +

ρ2r
Ni

)
with Ni as the total

number of patients for center i. We use this normal distribution to test for
centers whose sample mean y∗i is significantly different from 0 through the
p-values of the test: H0 : y∗i = 0 vs. H1 : y∗i ̸= 0 for each center i. Using all
data points, the p-value for center i is computed as:

p(y∗j ) =

{
min(2P (y ≤ y∗i ), 1) if y∗i ≤ 0

min(2P (y > y∗i ), 1) if y∗i > 0
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2.2 Estimate p-values for test on the variances

The sample variance of the modifed variable yijt is computed for each center
i as:

s2i =

∑
i,kNTi

(yijt − ȳij∗)2

(
∑Ni

j=1Nij)−Ni
where ȳij∗ is the mean of all modified records of patient j in center i; Nij is
the number of records for patient j in center i; Ni is the number of patients
in center i; and NTi is the total number of records in center j across all
patients. We assume that the sample variance follows a gamma distribution,

s2j ∼ Γ(κ, θ). For p-values, we need to first introduce N =

(
Ni∑
j=1

Nij

)
−Ni

and then compare the sum of squares in each center ssi = Ns2i to their
expected value.

3 Simulation study

To assess the properties of the proposed tests, we conducted a simulation
study. Table 1 shows how the clinical trials were simulated. The perfor-
mance of the proposed tests is measured by their specificity and sensitivity.

TABLE 1. Setup of the simulation study.

Number of centers 75
Total number of patients 700
Number of patients per center 5, 10, 20, 40 or 100
Number of ePRO records per patient 100
Distribution of the endpoint variable at t = 1: xij1 ∼ N(3, 0.6)
Additive time trend per patient 0.01t+N(0, 0.5)
Autoregressive coefficient 0.9xt−1

Number of simulations 1000

First, we assess the specificity of the tests without any outlying centers.
Figure 1 shows that the average specificity is above 0.98 for both the mean
test and variance test, regardless of the center size (i.e. number of patients
in the center). There is no visible effect of the center size on the estimated
p-values when the data does not contain outlying centers. Next, we add
contamination to a random center and check if the outlying center is de-
tected by our new tests. We introduce a shift of 0.1∗mean(xijt) to a random
center for the mean test and a shift of 0.1 ∗ sd(xijt) to a random center
for the variance test. We then calculate the sensitivity and specificity of
the new tests per size of the contaminated center. Figure 2 shows that the
specificity of the tests remains high, despite having a contaminated center
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in the data., so the tests do not generate too many false positives. The
sensitivity of both tests improves as the center size of the contaminated
center increases, which is expected because smaller outlying centers are
more difficult to detect and require more statistical power to be identified.
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FIGURE 1. Specificity analysis of the mean test (left) and the variance test
(right) when no centers are contaminated.
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FIGURE 2. Sensitivity and specificity analysis of the mean test (left) and the
variance test (right) when one center is contaminated.
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Abstract: For various areas of ordinal compositional data (CoDa), approaches to
consider the natural order among the categories are proposed and recommended
to complement existing CoDa methods. Their benefits are demonstrated for a
descriptive data analysis, for statistical inference based on CoDa samples, for
control charts to monitor a CoDa process, and for compositional time series
analysis.
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1 Introduction

For a given set of categories, say S = {s0, . . . , sd} with d ∈ N = {1, 2, . . .},
the vector x = (x0, . . . , xd)

⊤ ∈ (0; 1)d+1 is said to be a (d + 1)-part com-
position iff its components sum up to one. Here, xi is interpreted as the
proportion of category si, and a data set consisting of such compositions
is referred to as CoDa. The range of x is the (d+ 1)-part simplex

S :=
{
x ∈ (0; 1)d+1

∣∣ x0 + . . .+ xd = 1
}
.

A CoDa vector p ∈ S might serve as the probability mass function (PMF)
of a categorical random variable (RV) Q with range S, thus establishing a
natural connection between CoDa and categorical data. In many applica-
tions, the categories behind CoDa are unordered, so S is a nominal range,
and the notation “s0, . . . , sd” uses a lexicographic order. Hence, “the con-
clusions of a compositional analysis should not depend on the order of the
parts” (Pawlowsky-Glahn and Buccianti, 2011, p. 17). However, in some
examples, the categories in S exhibit a natural order, namely s0 < . . . < sd,
so the categorical RV Q is indeed an ordinal RV. In this case, we refer to

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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x ∈ S as an ordinal composition. While it is still justified to apply the well-
established CoDa approaches to ordinal CoDa, it is shown that additional
insights are gained if these are supplemented by new CoDa approaches
that explicitly account for the order within S. Such novel ordinal CoDa
approaches are derived by adapting well-established concepts from ordinal
data analysis. Their potential benefits are demonstrated for a descriptive
analysis of ordinal CoDa, for statistical inference regarding ordinal CoDa
RVs, for control charts to monitor ordinal CoDa processes, and for analyz-
ing and modelling compositional time series (CoTS).

2 Applying Ordinal Statistics to CoDa

Let Q be an ordinal RV with range S and PMF p ∈ S. To account for the
natural order in S, one prefers the cumulative distribution function (CDF)
given by the vector f = (f0, . . . , fd−1)⊤ ∈ [0; 1]d, where fj = P (Q ≤ sj).
For a parametric modelling of ordinal data, one may use the latent-variable
approach (Agresti, 2010, p. 11). If L is a (latent) real-valued RV with
specified CDF FL(x), then one “reparametrizes” f in terms of threshold
parameters −∞ < η0 < . . . < ηd−1 < +∞ such that

fj = FL(ηj) for j = 0, . . . , d− 1. (1)

The most popular choice for FL is the standard logistic distribution, leading
to the cumulative logit model.
For an ordinal RV Q, the location is expressed by the median. A common
ordinal dispersion measure is the index of ordinal variation,

IOV(f) =
4

d

d−1∑
i=0

fi(1− fi) ∈ [0; 1], (2)

and an ordinal skewness measure is given by

skew(f) =
2

d

d−1∑
i=0

fi − 1 ∈ [−1; 1]; (3)

see Weiß (2020) for a discussion. To apply the ordinal measures (2) and (3)
to ordinal CoDa x ∈ S, we have to accumulate these vectors by c := Tx
with the matrix

T =

1 0 · · · 0
...

. . .
. . .

...
1 · · · 1 0

 .

Then, we evaluate the ordinal dispersion and skewness of x by applying
formulae (2) and (3) to c instead of f . Consider the data set ageCatWorld
of the R-package robCompositions as an example, which provides 3-part
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FIGURE 1. Age proportions in 195 countries from Section 2: plot of skew against
IOV in (a), ternary diagrams in (b) and (c).

compositions (d = 2) x1, . . . ,xn for the ordered categories of people with
age < 15 (xi,1), 15–60 (xi,2), and > 60 (xi,3) in n = 195 countries. Accord-
ing to Figure 1 (a), the values of IOV(ci) vary between 0.4 and 0.8 (medium
to strong dispersion). The few countries with IOV < 0.6 (empty circles in
the ternary diagram in (b)) are those with a high proportion of people
with age 15–60. Countries having an IOV ≥ 0.7, in turn, are plotted (by
grey dots) relatively close to the axis between the lowest and largest age
category. Part (a) also shows at most moderate skewness values (maximal
absolute extent around 0.4), where countries with negative skewness tend
to show larger dispersion. Part (c) shows that positive skewness values re-
fer to the lower-left half of the triangle: right-skewed compositions are left
leaning, so the lower categories dominate the upper ones.

3 Statistical Inference for Ordinal CoDa

Let X1, . . . ,Xn be an independent and identically distributed (i. i. d.) sam-
ple of ordinal CoDa RVs, define σij = Cov[Xi, Xj ] for i, j = 0, . . . , d. Let
Ci := TXi with mean f , let C denote the sample mean of C1, . . . ,Cn,
and let σ′

ij =
∑i
r=0

∑j
s=0 σrs. Then,

√
n IOV(C) according to (2) is asymp-

totically normally distributed with

E
[
IOV(C)

]
≈ IOV(f) − 1

n
4
d

∑d−1
i=0 σ

′
ii,

V
[
IOV(C)

]
≈ 1

n
16
d2

∑d−1
i,j=0(1− 2fi)(1− 2fj)σ

′
ij .

(4)

For skew(C) from (3), we have

E
[
skew(C)

]
= skew(f) and V

[
skew(C)

]
≈ 1

n
4
d2

∑d−1
i,j=0 σ

′
ij . (5)

The finite-sample performance of (4) and (5) is investigated by simula-
tions. We apply (4) and (5) to the data set educFM of the R-package
robCompositions, which provides the proportions of low, medium, and
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Father Estim. Bias SE

IOV(C) 0.731 -0.003 0.022

skew(C) 0.414 0.000 0.043

Mother

IOV(C) 0.652 -0.002 0.033

skew(C) 0.516 0.000 0.041

FIGURE 2. Proportions of education levels in 31 European countries from Sec-
tion 3: ternary diagram in (a), plot of skew against IOV in (b), estimates in (c).

high education levels of father and mother, respectively, in n = 31 Eu-
ropean countries. From the ternary plot in Figure 2 (a) and the IOV-skew
diagram in (b), no significant differences between the education proportions
of father and mother (black vs. grey dots) can be recognized. But if looking
at the point estimates for IOV(C) and skew(C) and their corresponding
asymptotic standard errors (SEs) in (c) (the biases are negligible), we rec-
ognize a difference being larger than two times an SE. So in view of the
asymptotic normality according to (4) and (5), we conclude that the IOV
and skew estimates are significantly different between father and mother.
In fact, the mothers’ education proportions are closer to a one-point dis-
tribution in the category “low”, possibly indicating unequal opportunities
for education among males and females in the past.

4 Control Charts for Ordinal CoDa

If monitoring an ordinal CoDa process (Xt) being assumed to be i. i. d.
under in-control conditions, then existing control charts such as in Vives-
Mestres et al. (2014) do not make use of the natural order of the categories.
We consider the accumulated process (Ct) with in-control mean f0 and
apply an exponentially weighted moving-average (EWMA) approach with
parameter λ ∈ (0; 1): Ct,λ = λCt + (1− λ)Ct−1,λ with C0,λ = f0.
Then, the EWMA IOV- and skew-charts are defined by plotting

IOV(Ct,λ) and skew(Ct,λ) for t = 1, 2, . . . (6)

against appropriately chosen control limits. It is shown through simula-
tions that these novel control charts allow for a targeted diagnosis of the
actual out-of-control scenario and, thus, constitute a valuable complement
of existing CoDa control charts. An illustrative data application about the
manufacturing of grit (particle size proportions with categories “large”,
“medium”, and “small”, see Vives-Mestres et al. (2014) for details) is pre-
sented in Figure 3. While the skew-chart in (b) does not indicate a system-
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FIGURE 3. Particle size proportions from Section 4: EWMA IOV-chart in (a)
and EWMA skew-chart in (b), where λ = 0.1.

atic skewness change, the IOV-chart in (a) uncovers an exceptionally low
dispersion for t ≤ 16 and t ≤ 23.

5 Ordinal Compositional Time Series

For modelling an ordinal CoTS, an extension of the conditional regres-
sion model of Zheng and Chen (2017) is proposed that makes use of
the cumulative logit approach (1). Define X̃t = (Xt,0, . . . , Xt,d−1)⊤ and
p̃t = (pt,0, . . . , pt,d−1)⊤, and let f t denote the conditional CDF vector
given the information up to time t− 1. Then,

ft,i = FL

(
ηi+

∑p
k=1 α

⊤
k X̃t−k+

∑q
l=1 β

⊤
l p̃t−l

)
for i = 0, . . . , d−1 (7)

has a similar structure like an autoregressive moving-average model. Model
(7) is adapted to account for covariate information zt by adding the sum-
mand “+γ⊤zt” within the parentheses.
The subsequent data example shows that (7) enables an efficient and
well-interpretable modelling of ordinal CoTS. The CoTS x1, . . . ,x42 in
Figure 4 (a) shows the yearly proportions of three weight categories (so
d = 2) in Germany for the period 1975–2016, which are determined
based on the body mass index (BMI) as follows: “not overweight” (BMI
< 25), “overweight” (BMI in [25; 30)), and “obese” (BMI ≥ 30). These
(age-standardized) percentages for different BMI classes are provided by
the World Health Organization. The vertical dashed line between the
years 2010 and 2011 expresses the following partition: the data x1, . . . ,x36

for 1975–2010 are used for model fitting, and x37, . . . ,x42 for 2011–2016
for out-of-sample forecasting. Because of the obvious trend in Figure 4 (a),
a first candidate model is a simple (logistic-)linear model:

ft,i = F0,1(ηi + γi t) for i = 0, . . . , d− 1. (8)

As a competitor, (8) is extended by an additional autoregressive compo-
nent:

ft,i = F0,1(ηi + γi t+ α⊤
1 X̃t−1) for i = 0, . . . , d− 1. (9)
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Model i ηi γi α1,i CSSin CSSout

(8) 1 0.480 -0.019 0.698 1.269
2 2.350 -0.027

(9) 1 0.469 -0.016 0.322 0.410 0.379
2 2.354 -0.025 -0.651

FIGURE 4. Proportions of weight categories from Section 5: (a) plot of propor-
tions over time, and (b) table with model fits and corresponding CSS values.

Parameter estimation is done by a conditional least-squares (CLS) ap-
proach, i.e., by numerically minimizing the conditional sum of squares
(CSS) defined by

CSS(θ) :=
∑
t

∥Xt − pt∥2 → min, (10)

where θ comprises all model parameters, and where ∥ · ∥ denotes the Eu-
clidean norm. The results of CLS estimation are summarized in Figure 4 (b).
The linear coefficients for models (8) and (9) are negative in agreement with
the decreasing curves in Figure 4 (a). For performance analysis, two types
of CSS are computed: “CSSin” equals 103 times the CSS (10) computed
for the in-sample data t = 2, . . . , 36, and “CSSout” the one for the out-of-
sample data t = 37, . . . , 42. It can be seen that the additional autoregressive
term, given by “+0.322Xt−1,0−0.651Xt−1,1”, leads to an improved model
performance.
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Abstract: Forward stagewise regression is a simple algorithm for estimating
regularized models. The updating rule slowly solves the optimization problem by
adding a small constant to each regression coefficient in each iteration. This is
similar to gradient boosting, but the step size is determined differently. Gradient
boosting for distribution regression can lead to a vanishing gradient problem in
a number of situations, resulting in suboptimal models. We propose a stagewise
boosting type algorithm for complex distribution regression modelling with corre-
lation filtering and best subset selection that can handle very large data problems.
We demonstrate the effectiveness of our proposed approach using an example of
lightning count data with over 9.1 million observations and 672 covariates.
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1 Introduction

Modern regression models can provide full probabilistic predictions, cru-
cial in numerous applications such as predicting severe weather (see, e.g.,
Simon et al., 2019). The generalized additive model for location, scale, and
shape (GAMLSS; Rigby and Stasinopoulos, 2005) is a well-known model
class for such probabilistic settings. A common choice for stable estimation
and variable selection for such models is gradient boosting (Mayr et al.,
2012). However, the search for the optimal stopping iteration (e.g., in cross-
validation) can lead to suboptimal models, especially when the updating
scheme depends heavily on gradient information and when the vanishing
gradient problem occurs for some predictors and updating basically stops
after a few iterations, as illustrated on simulated negative binomial type 1
(NBI) data in Figure 1. Here the optimum β⋆σ is not reached with gradient
boosting even after 1000 iterations, even with a large chosen step length

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Boosted NBI model vanishing gradient problem. First row, (marginal)
log-likelihood functions, second row, corresponding gradient information.

parameter, see the left column. To address the vanishing gradient prob-
lem in distributional regression models, we propose adapting the general
stagewise algorithm (Thibshirani, 2015) to update coefficients at a small
bounded (semi-constant) rate determined by the sign of the gradient. This
approach allows for a more balanced selection of covariates, e.g., as illus-
trated in Figure 1, the optimum is reached in very few iterations with
stagewise boosting. Moreover, our method improves on existing boosting
approaches for GAMLSS by offering best subset selection of distributional
parameters, a variable selection method for high-dimensional models, and
a batchwise version for processing large datasets efficiently.

2 Model and Algorithm

Let yi be the response and xi covariate information for data with n ob-
servations indexed by i = 1, . . . , n. We assume conditional independence
of observations given covariates. Here, the response yi has parametric
density Yi|xi ∼ D (θi1, . . . , θiK), where the K parameters θik ≡ θk(xi),
k = 1, . . . ,K, are linked to additive predictors ηk using known monotonic
and twice differentiable functions by hk(θik) = ηk(xik) = ηik = x⊤

ikβk.
In this context, x⊤

ik is a row of the predictor specific design matrix Xk

and βk = (β0k, . . . , βJkk)⊤ are regression coefficients that need to be es-
timated. Further, ηk = Xkβk is the vector of the k-th linear predictor,
X = (X1, . . . ,XK) is the full data matrix and β = (β1, . . . , βK)⊤ the vector
of all regression coefficients. In each iteration t = 1, . . . , T , our stagewise
boosting algorithm starts by preselecting the variables with the highest
correlation (in absolute value) with the gradient vectors
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gk =

(
∂logD(yi,xi, β

[t−1])

∂ηk

)
i=1,...,n

.

This leads to a set of K variables, one variable per distribution parame-
ter. One novelty here, which deviates from the classical cyclic or non-cyclic
boosting is that our algorithm selects the best subset of the potential vari-
ables for a succeeding update instead of an update of all (cyclic) or only
the overall best performing variable (non-cyclic). Second, for determin-
ing the best performing subset of variables, consider a non-empty subset
S ⊂ {1, . . . ,K}. We combine the derivatives of the averaged log-likelihood

function ∂ℓj∗s s = 1
n
∂ℓ(β[t−1];y,X)

∂βj∗s s
determined from D(·), with respect to the

potential variables (indexed by j∗s ) into a gradient∇LS =
(
∂ℓj∗s s

)
s∈S which

will be used to define the updating step. To avoid an exploding or a vanish-
ing gradient, the gradient ∇LS gets rescaled if its euclidean length exceeds
a certain value ϵ and if any individual partial derivative ∂ℓj∗s s fails to over-
come a minimum threshold ν · ϵ (e.g., ν = 0.1, ϵ = 0.01) they get rescaled
to this threshold value. For s ∈ S, this rescaling yields our semi-constant
updating step length of the parameters ϵSs and the corresponding updates

β[t]
s = β[t−1]

s + ϵSs · sign
(

(Xs)
⊤
·j∗s gs

)
· ej∗s ,

where ej∗s is a vector of zeros except at position j∗s is a one. The subset
S with the highest improvement in the log-likelihood gets choosen. By
selecting variables through correlation with gk and adding a threshold value
κ (e.g., κ = 0.15), we can filter out variables with rjk ≤ κ and consider
only the remaining ones (rjk > κ) for updating. If no variable remains in a
distributional parameter with a sufficiently large correlation, no update is
performed. As the updating continues, the correlation values decline until
they no longer overcome the minimum requirement κ, indicating implicit
early stopping. To estimate models with large datasets, we use stochastic
approximations of correlations and updates. We perform preselection on
a subset of data i[t] ⊂ {1, . . . , n} and choose which variables to update
on the next batch i[t+1], providing stability with quasi out-of-sample data.
This described algorithm is our stagewise boosting variable selection step.
Following this we refit the model with the selected variables and with the
same algorithm but without the correlation filtering until convergence.

3 Lightning forecast in Austria

Lightning is a natural phenomenon that occurs during thunderstorms, when
the electrical charge in the atmosphere becomes imbalanced. We use high-
resolution data from the Austrian Lightning Detection and Information
System (ALDIS; Schulz et al., 2005) and explain the lightning counts with
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FIGURE 2. Out-of-sample diagnostic plots are shown in the top row. The bottom
row shows the coefficient paths of selected variables in selection step of algorithm.
The suffix function corresponds to the transformation applied to the variable.

reanalysis data from ERA5, the fifth generation of ECMWF (European
Centre for Medium-Range Weather Forecasts) atmospheric reanalyses of
global climate. We use the data corresponding to 2010 up to 2018 (≈ 8.2
million observations) as training data and the year 2019 as validation data.
We include 84 physical variables in our analysis, which we initially trans-
form using the empirical distribution function to ensure that all variables
fall within the interval [0, 1]. Following this initial transformation, we aug-
ment each variable with eight different transformations, resulting in each
linear predictor having a pool of 84 · 8 = 672 variables to select from:

x 7→ x

x 7→ x2

x 7→ x3

x 7→ exp (x)

x 7→
√
x

x 7→ logp(x) = log (x+ 0.01)

x 7→ logm(x) = log (1− x+ 0.01)

x 7→ logitc(x) = log

(
0.999 · x+ 0.001 · 0.5

1− (0.999 · x+ 0.001 · 0.5)

)
To better capture the characteristics of rare positive lightning events, we
aim to improve our model by subsampling the zero count data during the
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FIGURE 3. Refitted ZANBI lightning model. Compared is a (out of sample)
forecast for the date 2019-07-27 with the observed counts. The time evolution
from 1 pm up to 4 pm is depicted along the horizontal axis in the panel plot. The
top row shows the observed number of lightning counts, the second row shows
the probability for at least one count, the third row shows the probability for at
least 10 counts and the fourth row shows the probability for at least 20 counts.
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variable selection step. We achieve this by specifying batches i[t] consisting
of 10000 random samples each from the flash counts = 0 and counts > 0
observations. To account for subsampling, we apply an intercept adjustment
in the logistic regression part of our model prior to the refitting step. The
subsampled parameter βsub

0ν gets adjusted to

β0ν = βsub
0ν − log

(
1− τ0
τ0

· t0
1− t0

)
,

where τ0 is the proportion of zeros in the dataset and t0 is the proportion
of zeros in the subsampled dataset. We have t0 = 0.5 and τ0 ≈ 0.0265.
Diagnostic plots and the evolution of coefficients from the selection step
are shown in Figure 2. On the top left entry a qq-plot based on randomized
quantile residuals is shown, indicating a optimal fit for all but some extreme
values corresponding to very high count observations. The PIT histogram
also indicate a good calibration. The top right plot is a reliability diagram
for the tail probability P(counts > 0). It shows that the in-sample fit is
good and the out-of-sample fit experiences some overestimation for the
high tail probabilities. Please note that the proportion of positive counts in
the training data set is ≈ 2.65% and for the out-of-sample data set ≈ 1.8%.
An out-of-sample forecast for severe lightning counts (counts ≥ 10) is il-
lustrated in Figure 3.

Acknowledgments: This project was partially funded by the Austrian
Science Fund (FWF) grant number 33941. We are grateful for data support
by Gerhard Diendorfer and Wolfgang Schulz from OVE-ALDIS.
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Abstract: Gaussian processes offer a flexible approach to the statistical mod-
elling of arbitrary functions and are particularly effective for time-series interpo-
lation and prediction problems. We will demonstrate the versatility of Gaussian
process models for time-series analysis through illustrative examples of exoplanet
light curve modelling and applications to industrial and manufacturing data.
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1 Introduction

Gaussian process (GP) models are a powerful and flexible tool for per-
forming Bayesian inference and are used extensively for non-parametric
regression and classification problems in the machine learning community
(Rasmussen and Williams 2006, Bishop 2006). More recently, thanks largely
to their versatility and robust uncertainty estimates, they have begun to
be employed to solve problems in a diversity of fields such as engineering
and astrophysical data analysis. For example, within the exoplanet commu-
nity (an exoplanet being a planet which orbits a star other than the Sun),
GPs are now routinely used to model and remove the effects of so-called
“instrumental systematics” in transit light curves (Gibson, 2012). These
are often encountered as a result of imperfect observing conditions and/or
issues related to the light detectors and significantly hamper our ability to
infer the transit parameters, which are required to accurately identify key
atomic and molecular components in the planet’s atmosphere. A particular
strength of GPs is their ability to simultaneously model a potentially com-
plex deterministic component (e.g. a transit function) alongside a stochastic
component which describes the correlated noise structure. Furthermore, the
versatility of GP models allows them to be successfully applied to a wide

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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range of problems commonly encountered in industry, such as statistical
modelling of critical machine parameters, detecting outliers and predicting
machine breakdown. In this presentation we aim to illustrate the appli-
cability of GPs for solving challenges in a wide range of contexts, both
astrophysical and industrial.

2 Gaussian Process Models for Regression

A Gaussian process is defined as a collection of random variables, any
finite number of which have a joint Gaussian distribution (Rasmussen and
Williams 2006). In a typical regression problem we model our observed
outputs y as

y = f(x,ϕ) + ϵ, (1)

where x is an input variable (time in our applications), f is a mean func-
tion with parameters ϕ and ϵ is an independent and identically distributed
Gaussian noise process. For a GP, we can write the joint probability distri-
bution of y as:

p(y|x,ϕ,θ) = N (f(x,ϕ),Σ). (2)

Here, Σ is the covariance matrix and θ are the parameters of a kernel
function (often refereed to as the hyperparameters of the GP) and we can
write the log marginal likelihood explicitly as:

logL(r|x,ϕ,θ) = − 1

2
rTΣ−1r− 1

2
log|Σ| − n

2
log(2π), (3)

where r = y – f(x) is the vector of residuals from the mean function. Each
entry in the covariance matrix is populated by the kernel function which
describes the correlations between nearby data points. Hence, a GP is a
distribution over functions. We can form the joint probability distribution
of our training data and some new test data y∗:

p

([
y
y∗

])
= N

([
f(x)
f(x∗)

]
,

[
K(x,x) K(x, x∗)
K(x∗,x) k(x∗, x∗)

])
, (4)

where K(x,x) is the covariance matrix of the training data, K(x, x∗) is
the column vector formed from the elements k(x1,x∗), . . . , k(xn,x∗), and
K(x∗,x) is its transpose. k(x∗,x∗) is the scalar covariance of the test point
with itself, i.e., the variance. From (4), and using the standard results
for conditioning multivariate Gaussian distributions, we obtain the joint
posterior. It is then straightforward to extend this to an arbitrary number
of test points.
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FIGURE 1. An example white light curve for a typical ”Hot Jupiter” exoplanet.
The red line shows the best fitting model and the green line shows the systematics
model derived from the GP fit. Residuals are indicated below the light curve.

The marginal likelihood given by (3) may also be optimised to infer the
hyperparameters of interest, which may include either the GP hyperparam-
eters or the parameters of a mean function. It is also relatively straightfor-
ward to embed GPs within a Markov chain Monte Carlo (MCMC) frame-
work in order to infer the full posterior distributions of the hyperparame-
ters.

3 Applications to Transmission Spectroscopy

Transmission Spectroscopy involves measuring the wavelength-dependent
absorption of starlight by a planet’s atmosphere as it transits its host star.
These are extremely challenging measurements, as the typical signal is usu-
ally dwarfed by systematic effects in the light curves, necessitating the use
of sophisticated techniques to statistically model and remove them. Using a
GP, we can simultaneously model the deterministic transit function whilst
placing a distribution over possible functions to model the correlated noise.
Hence, we can marginalise out our uncertainty in the GP hyperparameters
and robustly infer the probability distributions of the transit function pa-
rameters (Wilson, 2021). Using this technique, we can begin to build up
a picture of the measured transit depth as a function of wavelength (com-
monly referred to as the transmission spectrum). Such information allows
us to infer the atomic and molecular composition of the planet’s atmo-
sphere and can also be used to infer the presence of clouds and scattering
particles (Sing, 2016). Figure 1 shows an example of a transit light curve
for a typical “Hot Jupiter” exoplanet fitted with a GP model.
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FIGURE 2. A GP model which has been fit to historical workload data in an
industrial setting. The resulting model is then used as a template to predict and
assess future performance.

4 Applications to Industrial Data

In an industrial and manufacturing setting, the versatility of GPs allows
them to be applied to a multitude of problems involving either interpolation
or prediction, particularly when we may not know the specific functional
form of the process. In particular, data generated from machine sensor and
Internet of Things (IoT) technologies can be used to gain insights into a
wide range of processes and these insights are often of significant interest
given their potential to increase efficiencies and optimise production. In our
presentation we will demonstrate our use of GPs for modelling and predict-
ing machine performance, monitoring critical machine parameters such as
temperature, current or voltage and for predicting machine breakdown. For
example, Figure 2 shows a GP model for hourly machine workload over a
weekly period which has been trained on historical data. This template
model can then be compared to new data in order to assess machine per-
formance. Such models may also be used to create dashboard visualisations
for real time feedback.
As a further example, in Figure 3 we show another typical industrial ap-
plication - the statistical modelling of critical machine parameters. Here,
we show a number of GP fits to simulated data which is inspired by a
real industrial process having three input parameters (A, B, and C). These
parameters may represent inputs common in such a setting such as tem-
perature, vibration, current etc. GP models are well-suited to fitting such
varied data and are capable of providing accurate predictions and robust
uncertainty estimates. Such modelling may be used to gain useful insights
into the behaviour of the parameters over time, or for extrapolating into
the future for predictive tasks.
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FIGURE 3. Example highlighting the ability of Gaussian processes to model
many varied processes. The data in the individual panels are inspired by a real
industrial process that has three input parameters A, B, and C. Black circles
show the simulated data, whilst the red lines show the best-fitting GP models.
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5 Discussion

Gaussian process models are both a powerful and flexible technique for
Bayesian non-parametric regression and they provide an effective approach
to statistically modelling many diverse phenomena from transiting exoplan-
ets to a multitude of processes frequently encountered in an industrial and
manufacturing context. Having briefly described the conceptual framework
for Gaussian processes, we will describe some of the uses that we have
found for GP models in our presentation, including illustrative examples
of light curve modelling, modelling critical manufacturing process parame-
ters, analysing and assessing machine performance and for identifying un-
usual behaviour and predicting rejected parts. These examples highlight
the versatility of Gaussian processes for modelling diverse phenomena and
their ability to enable data-driven decision-making in the presence of un-
certainty. With a wide variety of kernel functions available to model various
processes (e.g. periodic, quasi-periodic, long-term drifts etc.), GPs provide
a very flexible and effective approach to statistical modelling. Such ap-
plications, typically incorporating data generated by machine sensor and
Internet of Things (IoT) technologies, have the potential to increase process
efficiencies, reduce manufacturing costs and optimise production.
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Abstract: We propose a two-level extension of a previously introduced multi-
variate latent variable model, which allows incorporating covariates on both lev-
els. The presented model accounts for correlations among the response variables
through univariate random effects which are modelled using a mixture distri-
bution. We estimate the model parameters via an EM algorithm and provide
simulation results and a real data application.
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1 Introduction

The use of multivariate response models is not very widespread in statis-
tical practice. This may be related to the circumstance that ready-to-use
implementations are either only accessible via specialized software (such as
SAS), or are equivalent to fitting separate univariate response models (such
as R function lm). However, accounting for the multivariate response char-
acter has several inferential benefits including potentially increased powers.
Zhang and Einbeck (2022) introduced a versatile latent variable model for
dimension reduction and simultaneous clustering of multivariate data. How-
ever, their model did not allow for the inclusion of covariates and could not
deal with repeated measures. This paper aims to provide such extensions.
We consider a scenario where multivariate data xij ∈ Rm has a two-level
structure, with the upper level indexed by i = 1, 2, ..., r and the lower level
by j = 1, 2, ..., ni. The proposed two-level model takes the form

xij = α+ βzi + Γvij + εij , (1)

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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where α, β ∈ Rm, zi ∈ R, vij ∈ Rp is the vector of covariates (which may
include upper-level variates not depending on j), Γ ∈ Rm×p is a matrix of
coefficients, and εij are independent Gaussian errors (if there is only one
covariate, vij ∈ R, we write Γ = γ ∈ Rm). Under such a model, the data
grouping process is carried out on the upper level, while the lower level
units within the same upper level unit share a common random effect zi.
Model (1) does not require the normality of random effects so no concerns
to check the random-effects distribution (e.g., Drikvandi et al 2017).
Figure 1 illustrates a data scenario corresponding to this concept. The data
used here is simulated from model (1) in the case that the latent variable
obeys a three-point mixture distribution. The grey straight line represents
the one-dimensional latent space α+βz, and the black triangles positioned
along the straight line the mixture centres of each component. The coloured
thinner lines are for illustration only and show the trend of lower-level units
within each each upper level (which is to some extent a result of the random
error and to some part driven by the covariate). The orange triangles are

the fitted values: x∗ij = α̂ + β̂z∗i + γ̂vij , where z∗i =
∑K
k=1 wikẑk ∈ R are

obtained as the posterior random effects using posterior probabilities of
component membership wik (Aitkin, 1996).

FIGURE 1. Simulated data with 40 upper level units, each with 5 lower level
units, with α = (20, 10), β = (1, 3), πk = (0.2, 0.3, 0.5), zk = (1.73, 0.29,−0.87),
γ = (0.5, 1). Observations are generated with component-specific diagonal vari-
ance matrices Σk. (We avoid the use of the term ‘cluster’ since this has a different
connotation in the context of repeated measures.)
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2 Methodology

We conduct the parameter estimation using maximum likelihood method.
Since the component membership of each upper unit is unknown, we con-
sider this as an ‘incomplete data’ problem, and apply the EM algorithm.
The required complete data likelihood takes the shape

Lc =

r∏
i=1

ni∏
j=1

K∏
k=1

(fikπk)Gik ,

where Gik is an indicator variable taking the value 1 if upper unit i be-
longs to component k. We specify a multivariate Gaussian model for the
component-specific densities fik in model (1) as

fik =
1

(2π)m/2
1

|Σk|1/2
exp

(
−1

2
(xij − α− βzk − Γvij)

TΣ−1
k (xij − α− βzk − Γvij)

)
.

The expected complete log-likelihood is then given by

l =

r∑
i=1

ni∑
j=1

K∑
k=1

wik log(πk) +

r∑
i=1

ni∑
j=1

K∑
k=1

−1

2
wik log(|Σk|) +

r∑
i=1

ni∑
j=1

K∑
k=1

−m
2

log(2π)wik

+

r∑
i=1

ni∑
j=1

K∑
k=1

−1

2
wik(xij − α− βzk − Γvij)

TΣ−1
k (xij − α− βzk − Γvij),

where Σk is a component-specific diagonal variance matrix, and wik =
πkfik∑
l πlfil

is the probability of upper unit i belonging to component k. The

computation of wik is via the E-step. The parameters α, β, zk, Σk, and Γ
will be estimated through the M-step. The key parameter estimates are:

ẑk =

∑r
i=1 wik

∑ni

j=1 β̂
T Σ̂−1

k (xij − α̂− Γ̂vij)∑r
i=1 niwikβ̂

T Σ̂−1
k β̂

,

and

Γ̂ =

 r∑
i=1

ni∑
j=1

K∑
k=1

wik(xij − α̂− β̂ẑk)vTij

 r∑
i=1

ni∑
j=1

vijv
T
ij

−1

.

3 Real data application

The real data used here is obtained from the International Adult Literacy
Survey (IALS), collected in 13 countries on Prose, Document, and Quanti-
tative scales between 1994 and 1995. The data are reported as the percent-
age of individuals who could not reach a basic level of literacy in each coun-
try. Based on the Prose scale only, Sofroniou et al (2008) used these data
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TABLE 1. Posterior probabilities and intercepts for the IALS data. In the column
‘mass points’, the first two rows give estimated π̂k and ẑk.

Mass points
0.2308 0.5391 0.1532 0.0769

Country posterior intercept -1.1576 -0.0819 0.5904 2.8703

Sweden -1.15760 1.0000 0.0000 0.0000 0.0000
Germany -1.15756 1.0000 0.0000 0.0000 0.0000
Netherlands -1.15754 0.9999 0.0001 0.0000 0.0000
Canada -0.08188 0.0000 1.0000 0.0000 0.0000
Australia -0.08188 0.0000 1.0000 0.0000 0.0000
Switzerland(French) -0.08188 0.0000 1.0000 0.0000 0.0000
New Zealand -0.08173 0.0000 0.9998 0.0002 0.0000
Belgium(Flanders) -0.08163 0.0000 0.9996 0.0004 0.0000
Switzerland(German) -0.08114 0.0000 0.9989 0.0011 0.0000
United States -0.08036 0.0000 0.9977 0.0023 0.0000
Ireland 0.58386 0.0000 0.0098 0.9902 0.0000
United Kingdom 0.58912 0.0000 0.0019 0.9981 0.0000
Poland 2.87028 0.0000 0.0000 0.0000 1.0000

to rank countries according to their posterior intercepts z∗i =
∑K
k=1 ẑkwik.

We analyze the data considering the 3-variate response Prose, Document,
and Quantitative, additionally including the lower-level covariate gender in
the model; i.e. m = 3, p = 1 and Γ = γ ∈ R3.
The country-specific random effect zi accounts for the correlation among
the observations within upper-level units and the correlation among the
three response dimensions of the model. We fit the model with k = 4 mass
points and component-specific diagonal variances Σk, leading to an AIC
value of 235.5 which does not drop significantly when increasing k further
or with other variance parametrizations. Table 1 presents the joint ranking
via the posterior random effect and classification of the countries. The table
shows that Sweden, Germany, and the Netherlands are assigned to mass
point 1 with the smallest number of people being illiterate. Poland is the
only country that is assigned to the high illiteracy mass point 4. The US
and Ireland have posterior probabilities that spread across two mass points
but are assigned to different components. Using all three measurements as
a multivariate response, the component allocation of each country is more
decisive compared to the results using just Prose (Sofroniou et al, 2008).

4 Simulation study

We conduct a simulation study to examine the performance of our method.
Another objective of this simulation is to investigate whether an increase in
the number of upper- or lower-level units will effectively reduce the variance
in the parameter estimates. We first consider a scenario with r = 50 upper
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level units and ni = 5 lower level units, for i = 1, 2, . . . , r. This will be
the baseline experiment. Then we keep r = 50 unchanged and increase
the number of lower-level units to be ni = 10, for i = 1, 2, . . . , r. We
consider another sample size with lower-level units ni = 5 for i = 1, 2, . . . , r
unchanged but increase the upper-level units to be r = 100. We generate
200 replicates from the model (1) with one lower level covariate in all three
scenarios, with the covariate generated from a normal distribution with a
mean of 0.3 and a standard deviation of 0.2. The results indicate that when
we increase the upper-level units, the parameters’ RMSE decreases stronger
than when increasing the lower-level units. Then we further increase the
upper level units to be r = 200 and keep the lower level units ni = 5 for
i = 1, 2, . . . , r. The key results are shown in Figure 2, Table 2 and Table 3.

FIGURE 2. Estimates of key parameter γ with different number of upper-level
and lower-level units.

5 Conclusion

This paper provides an extended random effect model that applies to two-
level multivariate response data with latent structures. An EM algorithm
is used for parameter estimation. In particular, a nonparametric maximum
likelihood method (Aitkin 1999) is used for estimation of the random ef-
fect where the mass points zk and their weights πk, k = 1, 2, . . . ,K are
treated as unknown parameters to be estimated in the EM algorithm. An
application of constructing a league table using the IALS data is provided.
Another application is to fit multivariate response models.
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TABLE 2. Estimates of key parameters γ, zk and α with different upper-level
and lower-level units.

Average estimates
True r = 50, ni = 5 r = 50, ni = 10 r = 100, ni = 5 r = 200, ni = 5

γ1 1.000 0.989 0.993 0.991 0.995
γ2 3.000 3.036 2.972 3.009 2.998

z1 -0.816 -0.807 -0.814 -0.820 -0.809
z2 1.225 1.268 1.258 1.234 1.246

α1 2.000 2.037 2.039 2.034 1.991
α2 10.000 10.020 10.007 10.019 10.002

TABLE 3. RMSE for key parameters γ, zk and α with different upper-level and
lower-level units.

RMSE
r = 50, ni = 5 r = 50, ni = 10 r = 100, ni = 5 r = 200, ni = 5

γ1 0.269 0.167 0.166 0.118
γ2 0.474 0.297 0.296 0.194

z1 0.124 0.124 0.084 0.068
z2 0.198 0.207 0.133 0.132

α1 0.464 0.447 0.302 0.232
α2 0.172 0.161 0.120 0.088
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Abstract: Football players are repeatedly exposed to high competition demands,
that in turn increase the sports burden applied to them, as well as exposure to
the risk of injury. In this regard, we present a flexible modelling approach to
estimate the effect of training load on the risk of injury. This model, in contrast
to other modelling alternatives proposed in the sports injury research literature,
considers that a player can sustain subsequent injuries, and that training load
might vary over time, intensity and duration.

Keywords: survival analysis; piece-wise exponential additive mixed models;
sports analytics; football injuries; recurrent events.

1 Motivation

In football, a large amount of data is now collected, including data related
to external training load (e.g. training and competition time, power output,
distance, sprints, speed etc.) that are tracked by Global Positioning System
(GPS) devices. As such, the study of training load and its role in injury
prevention is one of the hot topics in sports injury prevention research.
A good understanding of the training load is key to developing effective
training plan strategies that will enhance players’ performance while also
lowering their risk of injury. And this requires establishing an etiologically
plausible time-varying exposure model, which defines how previous train-
ing affects the hazard of injury. Further, the model must consider that

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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recurrent injuries may be associated within players. To take into account
the latter, i.e. dependencies induced by injury recurrence, as well as the
intensity, duration and timing of past exposures, we propose the use of a
recurrent time-to-event flexible modelling approach with weighted cumula-
tive exposure (WCE) effects (Sylvestre and Abrahamowicz 2009).

2 The model

We based on the piece-wise exponential mixed modelling (PAMMs) frame-
work (Bender et al. 2018) and adapt its general formulation to build
on a recurrent events PAMM model with time-dependent covariates as
WCE-type cumulative effects. Then, the hazard rate of the i-th injury
(event) of the l-th player, given the player’s training exposure history
z(t) = {z(tz) : tz ≤ t}, is expressed as:

λl,i(t|zl,i(t), bl) = λ0(t) exp{g(z, t) + bl} =

= exp{β0 + f0(tj) + g(z, t) + bl} (1)

for all t ∈ (κj−1, κj ], t > 0 (and e.g. tj := κj), where κj , j = 0, . . . , J , are
the J + 1 cut points defining J intervals that partition the study follow-up
(0, tmax]. In Eq.(1), we have:

� The log-baseline hazard, β0 + f0(tj), where f0(tj) is expressed as a

smooth term of the form
∑M
m=1 γ0mBm(tj).

� The term g(z, t) denotes that past exposure effects of z cumulate over
time, over a relevant time-window τ(t), being the cumulative effect
of z at time t the sum of all weighted effects of past observations.

� A Gaussian random effect associated to player l, bl ∼ N(0, σ2
b ).

For a WCE-type effect, in Eq. (1), we consider time-varying exposure ef-
fects weighted by latency t − tz and linear on z(tz). That is, the contri-
bution of covariate z observed at time tz with value z(tz) is defined by
h(t, tz, z(tz)) := h(t− tz)z(tz).

Let z(t) = {z(tz) : tz ≤ t} = {z(tz,1), . . . , z(tz,Q)} be the set of all reg-
istered training load variables at time t. Then, g(z, t) is estimated with
P-splines (Eilers and Marx, 1996) as follows:∫

τ(t)

h(t− tz)z(tz)dtz ≈
Q∑

q=1

∆̃qh̃(t− tz,q) =

Q∑
q=1

∆̃q

M∑
m=1

γ1mBm(t− tz,q)

with ∆̃q = z(tz)(tz,q − tz,q−1) if tz,q ∈ τ(t) and 0 otherwise.
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TABLE 1. Simulation results for Nsim = 500 replicates of the estimations of
ht,tz ,z(tz) and σb, in each scenario setting in terms of mean RMSE and mean
coverage of 95% confidence intervals over each time-point tz = 1, . . . , 40.

Data generation mechanism RMSE Coverage

WCE shape Heterogeneity ht,tz ,z(tz) σb ht,tz ,z(tz)

σb = 0.05 0.030 0.134 0.93
Exponential decay σb = 0.5 0.032 0.166 0.92

σb = 1 0.034 0.354 0.93

σb = 0.05 0.032 0.138 0.91
Bi-linear σb = 0.5 0.032 0.168 0.92

σb = 0.1 0.034 0.346 0.92

σb = 0.05 0.046 0.135 0.80
Early peak σb = 0.5 0.047 0.176 0.78

σb = 1 0.048 0.361 0.78

3 Simulation study

To evaluate the model performance, we simulated Nsim = 500 times a
cohort of L = 500 individuals with exposures recorded tz,1 = 1, tz,2 =
2, . . . , tz,Q = 40 (Q = 40) days before the time at which we model the haz-
ard, drawing survival times from the piece-wise exponential distribution,
under three different true weight functions, each defined over a [0, Q] inter-
val, see Figure 1, and under three different levels of heterogeneity between
recurrent events, σb ∈ {0.05, 0.5, 1}. We refer to Table 1 for the summary
of the results.
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FIGURE 1. Each of the true weight functions (a)-(c) considered.

4 Application

We applied the proposed model to an observational injury data from an
elite male football team participating in LaLiga during the 2017-2018 and
2018-2019 seasons. A total of 36 players were followed-up, over 150 variables
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(external training load variables) were registered on a regular basis through
tracking devices and 72 non-contact time-loss injuries occurred among 23
players. We were interested in modelling “how the cumulative stress placed
on a player from multiple training sessions and matches, over a period of
time, affects his risk of a (recurrent) football injury”. In this regard, we
defined the follow-up time (t) unit as well as the exposure time (tz) unit
as the “number of match and training sessions” (i.e. the n-th session). We
analysed the effect of the “Average Metabolic Power” (zAvgMP) training load
variable, and set the lag-lead window to be τ(t) = {tz : t ≥ tz∧t < tz+11},
that means that all zAvgMP that were observed in the last 10 sessions prior
to t or at t can affect the hazard at time t. Figure 2 shows the estimated
cumulative effect of zAvgMP on the log-hazard scale.
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FIGURE 2. Visualization of the non-linearly varying cumulative effect of the
variable “Average Metabolic Power” (zAvgMP) on the log-hazard scale (left) and
one-dimensional slices with respect to the covariate z(tz) ∈ {4.6, 6.17, 9.01} (mid-
dle) and the latency t− tz ∈ {6, 9} (right).

5 Conclusion and further work

The modelling framework presented provides a suitable way to flexibly
model training load exposures and analyse their effect on recurrent foot-
ball injuries, with respect to other alternative measures of training load
exposures used in the literature. The validity of the approach was sup-
ported by the simulation study and applied to football injury data. In the
case study, we got that the player-related random effect term was signif-
icant and that the “average metabolic power” recorded 5 sessions earlier
had the greatest impact on the current hazard at time t. The lag-lead win-
dow used was defined based on experts’ criteria, but it could be improved
by selecting the optimal window with an additional penalty parameter.
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Abstract: This paper investigates the association between the Apolipoprotein
E4 single nucleotide polymorphism (SNP) and brain Tensor Based Morphometry
(TBM) as a potential candidate gene for Alzheimer’s disease. The Linear Mixed
Model (LMM) is used to analyse and model the data. The imputed data was
used to compare the results of the LMM to those obtained from the complete
dataset, allowing for the selection of the optimal model and the assessment of
missing values’ impact on performance. Ultimately, the LMM with a random
intercept and random slope was found to be the most representative model. These
models and such analysis could have important implications for understanding
the underlying mechanisms of Alzheimer’s disease. This study provides valuable
modeling insights into the relationship between genetic factors, brain structure,
and the development of Alzheimer’s disease.

Keywords: Longitudinal data; Linear Mixed Model; Brain TBM; SNPs; Missing
data.

1 Introduction

Genome-wide association studies (GWAS) and Tensor Based Morphometry
(TBM) are techniques used in genetics and brain research to identify genetic
variants, such as single-nucleotide polymorphisms (SNPs), and measure
structural changes in the brain over time using magnetic resonance imaging
(MRI), respectively. The linear mixed model (LMM) analyses longitudinal
data by modelling fixed and random effects to understand how factors
influence outcomes over time. Integrating genetic data with TBM and LMM
data can improve dementia treatments by aiding in the understanding of
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the brain structure, function, and treatment effects. SNPs set analysis in
GWAS has grown (Park et al., 2019; Sikorska et al., 2013). Researchers
have also used different statistical approaches such as Bayesian methods to
analyse longitudinal data (Ariyo et al., 2020). The objective of this paper
is using the LMM to further analyse and examine the relationship between
TBM and SNPs over time to identify the factors that contribute to the
development of AD.
Alzheimer’s disease Neuroimaging Initiative (ADNI) is a multisite that pro-
vides researchers with patient study data in order to track the progression
of the AD. Data of 806 patients was collected and prepared for this study.
Each patient was tested repeatedly using multiple scans over the time. This
data consisted of 3 main attributes: the time periods after 3, 6, 12 and 24
months of the baseline MRI scan, the TBM score (difference between the
scores of the current scan and the baseline) and the SNPs values. After
merging the original dataset with the TBM dataset, the longitudinal data
was generated to have 2575 records (Table 1).

TABLE 1. TBM scores over the time.

Time Patient Percent Scan Mean TBM SD TBM

0 806 Yes No -0.0120 0.0329
03 742 92% 8% -0.0136 0.0207
06 668 89% 11% -0.0129 0.0138
12 653 97.7% 2.3% -0.0103 0.0096
24 512 72.46% 27.54% -0.0124 0.0222

2575 89.33% 10.66% -0.0123 0.0221

Longitudinal studies frequently encounter missing values due to various
factors such as illness or personal circumstances, resulting in incomplete
patient scan data. To address this issue, researchers may choose to either
exclude the incomplete observations or employ statistical methods to im-
pute missing values. Multiple studies, including Molenberghs and Verbeke
(2001) and Donders et al. (2006), have concluded that Missing at Random
(MAR) missingness is commonly encountered in clinical data. Numerous
studies, such as White et al. (2011), have demonstrated the high effective-
ness of the Multiple Imputation by Chained Equations (MICE) method in
handling missing values in clinical data.

2 Longitudinal data modelling

Longitudinal data variables are measured repeatedly at different points over
time. In addition, time is a crucial factor in this study to understand TBM
scores variation, as a response component. The latter is associated to SNPs
with respect to Time. Accordingly, LMM were proposed to identify SNPs
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association with evolution of TBM score over time. The model is expressed
as follows:

Yi = Xiβ + Zibi + ϵi, i = (1, . . . , n). (1)

where n is the total number of patients (806); Yi is a miÖ1 vector of TBM
values for the ith patient; Xi is the miÖp matrix of fixed effects corre-
sponding to the p predictor variables (Time, SNP and interaction between
them); β is a pÖ1 column vector of the fixed effect regression coefficients;
Zi is the miÖq design matrix of the q random effects that describe the
subject-specific of time for the ith patient; b is a q Ö 1 vector of random
effects. Here q = 2 yielding a random intercept b0 and slope b1). Finally, ϵ
is miÖ1 vector of residual effects.

3 Results and discussion

To explore the association between TBM and SNPs over time, it is neces-
sary to include an interaction term between the two variables in the LMM
analysis. To address the missing values in the dataset, two approaches were
employed: the lme4 R package with maximum likelihood estimation and
the MICE technique. The best LMM model generated from both analysis
is presented below:

TBMij = β0 + β1SNPij + β2Timeij+

β3MMSEij + β4SNPij × Timeij + b0i + b1iTimeij + ϵij (2)

With i the patient and j the number of the MRI scan (1 to 4) taken at
Timeij equal to months 3, 6, 12 and 24. The SNPij variable indicates the
number of minor alleles and can take values from the interval 0 to 2. In
order to explore the relationship between TBM and SNP, several multiple
linear mixed models (LMMs) were employed. These models incorporated
additional variables to enhance robustness and ensure accurate interpreta-
tion of estimates. Moreover, special attention was given to including highly
correlated variables to avoid violating the assumptions of the LMMs.
The initial analysis using the lme4 package indicated that the model with
both a random intercept and a random slope (equation 2) provided the best
fit, as evidenced by higher R-squared values and lower AIC and BIC values
(see Table 2). The results of the analysis showed that the SNPs and MMSE
(Mini-Mental State Examination) variables were statistically significant (p-
value < 0.05), indicating a significant relation between these predictors and
the TBM variable. However, the time variable and the interaction between
SNP and time were not found to be statistically significant, suggesting that
these predictors did not have a significant influence on the TBM variable.
Next, the Multiple Imputation by Chained Equations (MICE) imputation
technique was employed to handle missing data assumed to be Missing at
Random (MAR) using the R package MICE. This approach allowed us to
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TABLE 2. Summary statistics of the three LMMs

Model R2 AIC BIC

Random intercept and fixed slope 58.3% -10604 -10566
Fixed intercept and random slope 18.6% -10273 -10235
Random intercept and random slope 71.8% -10983 -10934

impute the missing values in the dataset, resulting in an augmented dataset
806 patients with 4 visits each, totaling 3224 records.
Subsequently, Linear Mixed Models (LMMs) were conducted on the im-
puted dataset. The same model (equation 2) with both a random intercept
and a random slope, which was previously determined to be the best fit,
was used for analysis. The LMM analysis on the imputed dataset yielded
similar results to the previous analysis, with one notable difference, the
Time variable and the response variable (TBM) were found to be statisti-
cally significant (p-value < 0.05) in this analysis. Additionally, the model
demonstrated a higher R-squared value and smaller AIC and BIC values
compared to the previous model. Detailed information regarding the model
parameters can be found in Table 3. These findings indicate that the MICE
imputation technique improved the model fit and provided more accurate
results.

TABLE 3. Parameters estimation for imputed missing data.

Effect Parameter Estimate-Value t-values p-values

Intercept β0 -5.219e-02 -12.991 < 2e-16
SNP β1 -4.621e-03 -3.386 0.000743
Time β2 1.168e-04 2.413 0.015961
MMSE β3 1.497e-03 11.081 < 2e-16
SNP x Time β4 7.847e-05 1.402 0.161293

The LMM assumptions were evaluated for the best model selected (equa-
tion 2). Figure 1 presents a Q-Q plot (quantile-quantile plot) to assess
whether the residuals of the best model (equation 2) are normally dis-
tributed. While there is only slight deviation from normality, it appears
that the distribution possesses heavier tails compared to a normal distri-
bution. As a result, the presence of light tails on either end suggests that
alternative modelling approaches may be worth considering to satisfy the
normality assumption of LMM more accurately.
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FIGURE 1. Normal Q-Q plot of residuals.

4 Conclusion

This study investigated the use of linear mixed models (LMMs) to anal-
yse longitudinal data from the Alzheimer’s disease Neuroimaging Initiative
(ADNI) dataset. The analysis aimed to explore the relationship between
a specific genetic marker, Apolipoprotein E4 (APOE4) single nucleotide
polymorphism (SNP),and brain atrophy using Tensor-based Morphometry
(TBM) method over time. The findings revealed that a LMM with both
random intercept and random slope provided the best fit for the data.
This approach handled missing data and enhanced our understanding of
Alzheimer’s disease progression. The study highlights the importance of
considering genetic factors and demonstrates the effectiveness of LMMs
in analysing longitudinal data in the context of Alzheimer’s disease re-
search. Future studies can utilise advanced modelling techniques to explore
the relationship between genetic markers and brain atrophy in Alzheimer’s
disease, such as nonlinear mixed effects models, and other advanced ap-
proaches that can offer deeper insights into the complex dynamics and
facilitate further analysis of the relationship between this biomarker and
TBM.
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Abstract: We propose a flexible Bayesian approach for spatially adaptive
smoothing using tensor product P-splines. We define a spatially adaptive smooth-
ness prior and explain how posterior sampling can be implemented efficiently
in Stan. We conduct a simulation study demonstrating the advantages over
anisotropic Bayesian smoothing and consider an illustration for German pre-
cipitation data.
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1 Spatially adaptive Bayesian smoothing

Consider the two-dimensional nonparametric regression model

yi = f(xi1, xi2) + ϵi, ϵi ∼ N(0, σ2), i = 1, . . . , n,

where f : [0, 1]2 −→ R is an unknown function to be estimated. We assume
that the smoothness of f varies across the domain [0, 1]2 so that spatially
adaptive smoothing is appropriate. We expand f in terms of tensor product
B-splines, which allows us to write the model in the form

y = Bβ + ϵ = (B1 ⊗r B2)β + ϵ, ϵ ∼ N(0, σ2In),

where B is the n× d tensor product B-spline design matrix (the row-wise
Kronecker product ⊗r of the n × dj marginal B-spline design matrices
Bj , j = 1, 2). Isotropic or anisotropic smoothness priors are often used for
Bayesian smoothing (see, e.g., Bach and Klein, 2022), but these priors do
not allow us to capture locally varying smoothness adequately. To address
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this shortcoming, we follow Rodŕıguez-Álvarez et al. (2022) and consider
the spatially adaptive penalty matrix

K(λ1, λ2) = DT

1 diag(λ1)D1 +DT

2 diag(λ2)D2,

where D1 = ∆1 ⊗ Id2 and D2 = Id1 ⊗ ∆2. The ∆j , j = 1, 2 are second
order difference matrices of sizes (dj − 2) × dj and λ1, λ2 are two vectors
of positive smoothing parameters of lengths (d1 − 2)d2 and d1(d2 − 2),
respectively. To reduce the overall number of smoothing parameters, we
follow Rodŕıguez-Álvarez et al. (2022) and set

λ1 = X1ξ1 and λ2 = X2ξ2,

where X1 and X2 are two tensor product B-spline design matrices with
respect to pseudo-data on regular grids and ξ1, ξ2 are new vectors of positive
smoothing parameters of shorter lengths p1 and p2. With this, we can write
the spatially adaptive penalty matrix in the form

K(ξ) = DT

1 diag(X1ξ1)D1 +DT

2 diag(X2ξ2)D2.

In the present Bayesian setting we endow the tensor product B-spline co-
efficients β ∈ Rd with the corresponding partially improper Gaussian prior

p(β | ξ) ∝ Det(K(ξ))1/2 exp (−βTK(ξ)β/2) , β ∈ Rd. (1)

Thereby, Det is the generalized determinant, which is defined as the prod-
uct of nonzero eigenvalues. To complete the prior specification, we use the

Jeffreys prior for σ2 and exponential priors ξj
iid∼ Exp(θ) for the smoothing

parameters ξj , j = 1, . . . , p, with p = p1 + p2.

2 How to implement the model in Stan

We use Stan (Carpenter et al., 2017) for efficient posterior sampling. To
address the partial impropriety of (1), we make use of the Stan command
target +=. To increase MCMC sampling efficiency, we exploit the equality

Det(K(ξ)) = det(K(ξ) +H0), ξ ∈ (0,∞)p, (2)

where det is the usual determinant and H0 is the unique orthogonal pro-
jector onto the nullspace of K(ξ). Equality (2) is easy to prove and allows
us to compute the generalized determinant Det(K(ξ)) using a Cholesky
decomposition instead of a spectral decomposition, which is more efficient.

3 Simulation study

In this section we compare the performance of spatially adaptive Bayesian
P-splines and anisotropic Bayesian P-splines (see, e.g., Bach and Klein,
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2022) in terms of root mean squared error (RMSE). Similar to Scenario II
in Rodŕıguez-Álvarez et al. (2022) we consider the test function

f(x1, x2) = exp
(
−50 {(x1 − 1/2)2 + (x2 − 1/2)2}

)
.

The design points (xi1, xi2), i = 1, . . . , n, with n = 500 are iid uniform on
the domain [0, 1]2. The residual variance σ2 is equal to 1/4. Figure 1 shows
the RMSE across 100 replications.
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FIGURE 1. Root mean squared error across 100 replications for spatially adaptive
Bayesian P-splines (left) and anisotropic Bayesian P-splines (right).

4 Application: Precipitation in Germany

In this section we use spatially adaptive Bayesian P-splines to analyze
the spatial distribution of precipitation in Germany. We analyze publicly
available data for the year 2020 retrieved from the German Meteorological
Service, the DWD (cdc.dwd.de/portal). Spatially adaptive modelling is ap-
propriate because in general the amount of precipitation can be expected to
be similar for nearby locations. However, because of geographical features
such as mountain ranges there may also be abrupt changes in the amount
of precipitation. Figure 2 shows the estimated precipitation surface.

5 Discussion

We introduce spatially adaptive Bayesian P-splines as fully Bayesian coun-
terpart of the approach of Rodŕıguez-Álvarez et al. (2022), which is based
on restricted maximum likelihood (REML). We demonstrate the advan-
tages over anisotropic Bayesian smoothing and apply the approach to ana-
lyze precipitation data from Germany. An interesting point for discussion
is our use of Stan for posterior sampling: While this increases the flexibility
of the approach, it limits its scalability. On the one hand, it is very straight-
forward to carry the presented approach over to non-Gaussian regression
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FIGURE 2. Yearly amount of precipitation in Germany. The amount of precip-
itation is lowest in the northeast and highest near the Alps. This is in line with
the literature (see, e.g., Jung and Schindler, 2019).

models such as robust regression models, binary or count regression models.
To this end, one only needs to change the likelihood in Stan’s model block.
On the other hand, however, the scalability is limited and the sampling time
increases significantly when using large sample sizes n or a large number of
tensor product B-splines d. Similarly, the sampling time increases signifi-
cantly when moving from a two-dimensional setting to a three-dimensional
setting (e.g. for spatio-temporal data). Interesting directions for our future
research are:

� The derivation and implementation of a faster MCMC sampler that
is tailored to spatially adaptive Bayesian P-splines.

� The investigation of approximate Bayesian methods such as (inte-
grated nested) Laplace approximations or variational inference as an
alternative to MCMC.

First steps in the latter direction using the variational inference engine
implemented in Stan seem promising.
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Abstract: We present a weighted K-means approach for clustering weighted
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(unweighted) K-means approach.
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1 Introduction

Recently, as new data formats such as event stream data, play by play data
and specifically tracking data have been developed, the problem of cluster-
ing curves has found attention in sports modelling. In (team) sports, such
as American football or European Football (Soccer), players naturally move
on the pitch in specific trajectories. Since usually the paths of players on
the pitch follow certain criteria defined by the players position as well as
the tactics of the team, interesting analyses can be derived from studying
common pattern in these movements. Miller and Bornn (2017) for exam-
ple studied player trajectories in Basketball by clustering possession into
groups of similar offensive structure. Chu et. al. (2020) used similar tech-
niques to cluster routes of wide receivers in football and derive a database
of predefined routes.
The main motivation of this work is distinct from previous approaches and
is based on the idea that in football and soccer, routes or possessions (or in
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general trajectories of players/events) can be assigned weights. Instead of
considering routes or possessions only as observed (x, y)-pairs of trajectories
on the field, they can rather be viewed as a sequence of triplets (w, x, y).
An example from football are pass rushing routes from defensive players.
It is possible to assign to each observation of the trajectory a pressure
probability, which would serve as a weight for each (x, y)-pair. Then, it
makes sense to find structure in the weighted trajectories instead of the
original curves.
In this paper, we present a weighted K-means approach to cluster the
(weighted) trajectories of pass rushing defenders in American football, i.e.
defenders, whose aim is to attack the quarterback and hinder him from
throwing a pass. We consider a dataset provided by NextGenStats via the
NFL Big Data Bowl 2023 competition on Kaggle, which contains track-
ing data of every player on every passing play from the first 8 weeks of
the 2021 season of the NFL. For each player and play the data contains
(x, y)-coordinates of the trajectories until some event (usually when the
ball is thrown). We first build a model which assigns probabilities of quar-
terback pressure at (roughly) every timepoint in order to obtain weighted
trajectories for each defensive player.

2 Methodology

Formally, we consider data Y = {y1, . . . ,yn}, where each yi is an mi × 3
dimensional matrix of weighted trajectories, comprising of a vector of x-
coordinates, y-coordinates and a vector of weights w. Since mi is not fixed
but varies for each data point due to fact that some plays take longer
than others, it is necessary to unitize the data in order to use a K-means
approach. We thus approximate each trajectory by a Bézier curve evaluated
at a fixed number M of points. Details about this adjustment are omitted
to comply with the predefined page limit of the short paper.
We proceed by briefly describing the clustering methodology. The classical
K-means approach tries to find an optimal partition of the n observations
(xi, . . . , xn) into K cluster gi, i = 1, . . . ,K, such that the within cluster
sum of squares

S =

K∑
k=1

∑
i:gi=k

(xi − pk)2 (1)

is minimized. The prototype pk is given as the cluster mean , pk =
1
Nk

∑
i:gi=k

xi. In the case of weighted observations it makes sense to take

the weights into account by adjusting equation (1) such that instead the
aim is to minimize

K∑
k=1

∑
i:gi=k

vi(xi − pk)2. (2)
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The resulting optimal prototypes for a cluster are found as the weighted

averages pk =
∑

i:gi=k vixi∑
i:gi=k vi

.

To adapt the algorithm to the data at hand, each observation yi ∈ RM×3

is transformed such that an M̃ = 2M -dimensional vector
zi = (x1,i, . . . , xM,i, y1,i, . . . , yM,i) and a corresponding weights vector
wi = (w1,i, . . . , wM,i, w1,i, . . . , wM,i) of the same dimension is obtained.
The problem is then to find clusters and prototypes such that the following
expression is minimized:

min
(pjk),(gi)

K∑
k=1

∑
i:gi=k

M̃∑
j=1

wi,j(zi,j − pk,j)2. (3)

In analogy to classical K-means algorithms we implemented an iterative
refinement procedure which is initialized by an appropriate starting assign-
ment of clusters and then alternates between finding the optimal prototypes
for given cluster assignments and finding the optimal cluster assignment
given prototypes, until convergence is achieved, i.e. the change in the func-
tion to optimize is below some tolerance. The optimal prototypes for given
cluster assignment are given by

pk,j =

∑
i:gi=k

wi,jzi,j∑
i:gi=k

wi,j
, (4)

whereas the optimal cluster assignment given prototypes is found by min-
imizing

M∑
j=1

wi,j(zi,j − pk,j)2, (5)

over k.

3 Results

The left frame of Figure 1 shows the result of the weighted K-means al-
gorithm described in the previous section for the defensive football players
when using 12 clusters. Note that the X-axis is scaled, such that plays are
from left to right (from the viewpoint of the offensive team) and the value
0 indicates the line of scrimmage for the play. The aim is to derive clusters
of similar routes, where the weights, representing the probability of putting
pressure on the quarterback (QB), are taken into account. In essence the
idea is to distinguish between routes with high pressure outcome and low
pressure outcome. If the algorithm is able to do so automatically it is pos-
sible to identify strengths of players as well as teams. It can be observed
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nicely that there are outside as well as inside route clusters, and it is pos-
sible to identify effective routes and less effective routes (as given by the
pressure weights) for both categories. The grey cluster in the left part of
Figure 1 (Cluster 8) seems odd at first sight but upon examination it is
clear that it comprises of coverage routes. This is particularly nice, as when
analyzing pressure on the quarterback, such routes are not of importance
and/or interest. In theory one could simply omit them for the clustering
exercise, however from the data it is not clear how to distinguish them. Al-
though there are role labels for defenders (“Pass Rush“ and “Coverage“),
often coverage players also attack the quarterback. To emphasize the im-
portance of using a weighted K-means approach as opposed to a classical
K-means algorithm, the results from the latter approach are shown in the
right frame of Figure 1. From a pure route specific point of view the clus-
ters seem reasonable, we observe pass rush clusters and coverage clusters.
However, there are two main issues. First, when analyzing pressure on the
QB, coverage routes are not of much interest as is also evident from the
weights, which are (almost) 0 for these route clusters (clusters 2,6,7,10,12
in the right frame of Figure 1). Second, judging from the weights of the pass
rush route clusters (clusters 1,3,9,11), we are not able distinguish between
more threatening and less threatening routes, so the clustering is useless
when trying to identify which teams or players are effective at which posi-
tion.
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FIGURE 1. Left: 12 cluster as obtained from the weighted K-means algorithm
with average weights at each observation point of the trajectory. Right: 12 clusters
as obtained from the usual (non-weighted) K-means algorithm (only 9 clusters
shown).
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Abstract: Following the aim to give students of business science a tangible
introduction to data competencies, a game for the use in a statistics lecture was
developed. During this game, students are tasked with collecting and using data
in order to maximize the profit of their hypothetical company and win the game.
The game uses a hands-on approach with paper and few work materials. It further
uses R-code to compute additional data for the groups. The game will be used in
an analysis of motivation and stress of students regarding statistics.
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1 Introduction

To introduce economic students at the University of Göttingen to data
competencies, a game dealing with data and data collection was de-
veloped. Data competency is an important skill to have. From an eco-
nomic standpoint, data literacy improves the quality of decisions in firms
(Ghasemaghaei et al., 2018) as well as the quality of manufacturing plan-
ning (Chae et al., 2014). Moreover, data collection and its usage can im-
prove the quality of health care if done well (Bose, 2003). These are brief
examples of the practical relevance of data competencies being taught in
university.

2 Outlining the Game

The given goal within the developed game is profit maximization of hypo-
thetical companies. In contrast to other business simulation games, much
of the given information is uncertain while the mechanics of the game are
kept very simple. The game consists of three rounds with six phases each.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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The phases are: (1) information, (2) contract, (3) buying, (4) production,
(5) selling and (6) destruction phase. An explanation of the contents of
these phases can be found in Figure 1. The firms - made up of groups of
five to seven students - can produce and sell three different products: a
rectangle, a triangle and a circle. Each shape is made out of paper by the
means provided to each firm (see below). The shapes are shown in Figure
2. Only very little variation to the given measurements is allowed.

(1) Information Phase: The groups get information about expected
paper cost, selling prices, price development and their account balance.
(2) Contract Phase: Each group has to make an offer over the num-
ber of products and the respective selling price via a contract form.
After consideration of all offers, the market decides which offers will be
accepted. An exemplary upper limit for the accepted price is the 80%
quantile. Additional policies are: the market does not accept more than
offered and if the firm delivers less than offered, the price is reduced.
(3) Buying Phase: The paper in A4 format is bought at the given
market price. An order form has to be handed to the market and the
resources need to be collected from the market within the give time.
(4) Production Phase: The groups produce what they have offered
with the bought paper and the given material. Ideally, the groups have
members who count and quality check their products.
(5) Selling Phase: The seller brings the products to the market, who
decides on the fulfillment of the contract after a quality check.
(6) Destruction Phase: In this variant, residual and unused paper is
collected. Therefore, the groups start the next round with zero stock.
Completion After the last destruction phase, the winner is announced.
Subsequently, the students are asked to reflect the game and answer
some questions regarding data collection, development and usage.

FIGURE 1. Description of the game phases.

Next to the craft required to produce these products (which many of the
students focus on fervently), one catch of the game lies in limited working
materials given to each group: one pencil, one ruler, one triangle ruler,
one pair of scissors, one compass and one glue stick. Therefore, not every
member of the group can produce at the same time. To aid this intended
division of labour, the groups are given exemplary recommendations for
roles within a group: production, buyer, seller, accounting, management
and consulting. Theoretically ample spare capacity is left for (statistical)
analysis to aid the optimisation of the firms performance. The groups decide
in which way they may want to distribute tasks among their members. The
lecturer (with additional help) embodies the role of the market.
The time for each phase is short (three to five minutes), therefore collabo-
ration within the group is important. The students need to figure out what
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to produce and how. Some reflected students may realise from the outset
that to this end an explicit analysis of the data they have at their disposal
and/or the generation of data may explicitly aid their performance. How-
ever, our experience is that many teams don’t reflect upon the potential
use that data can have, which ultimately yields a plastic experience of the
use of statistics in the follow-up reflection.

6 cm width

10 cm

height

6 cm each side

10 cm radius

FIGURE 2. Types and dimension of the products.

Still, during and after the game the students should have reflected on the
significance of the mean and prognosis because of the given information
in the information phase. They also should have thought about different
types of data. Besides metric data like buying and selling prices, they also
have to use ordinal data, for example who can produce the most (most
accurate, fastest, ...) products. In a later lecture, the game can also be used
to calculate an example of confidence intervals. The calculations regarding
the account balances and the decision over which selling prices are accepted
are made with R (R Core Team, 2023). Here lies the possibility to show the
students the specific code or even task them with writing their own code.

3 Preliminary evaluation

In a preliminary evaluation of the usefulness of the game in the statistics
curriculum, we used a sample size of 110 students, who were offered to
play the game during a lecture. For most of the participation the statistics
module is mandatory. Accordingly, we consider the sample to be roughly
representative of the population of economics students at our university,
although the usual set of potential selection biases cannot be ruled out. The
game was played at the beginning of the semester, and most of the students
had not yet heard a lot of the teaching material of the course. A fixed
number of six groups was picked at the outset to limit the administrative
requirements. That led to groups consisting of 15 to 20 members. Each
group was given the material, contract and order forms and an inventory
list. During the game, it became clear that not all groups wrote down notes
about the rules, so there were uncertainties at different stages.
Not all groups assigned roles or tasks to their members, which expressed
itself during the phases. Some groups did not collect necessary data during
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the information phase. As a consequence, they were unsure how to price
their products and how much paper to buy. Overall, this was not bad,
because it gave them a good opportunity to reflect which data they should
have collected. The 80% quantile was used for the accepted selling prices.
For the groups, this implied that they also should gather data about the
other groups, e.g. their offered prices, in order to possibly adjust their own
prices in the next round according to the other groups and the data from the
information phase. Furthermore, some groups had trouble being on time
during the contract, buying and selling phase because they were unsure
who would fill out the forms and contact the market. In addition, most of
the groups did not have a (sufficient) quality check of the products and the
market had to reject a lot of products, which diminished their profit.
In the completion, some students reported that the first round was more
like a trial round for them. Therefore, they were better able to use the
given information about the prices and their collected data (e.g. regarding
the possible number of producible products) during the following rounds.

4 Planned analysis

For the next conduction of the game, some adjustments will be made for
further analysis. Besides adding shortened rules to the given material, the
group size is going to be reduced (5 – 7 members) so that roles and tasks can
be better distributed. The given number of groups is chosen accordingly.
Data related to the experienced emotions of students during the statistics
course and their motivation regarding statistics is going to be collected. In
particular, their attitude towards statistics before and after the game as a
pre- and posttest shall be examined. For this, students will be asked to fill in
a questionnaire, e.g. the Survey of Attitudes Toward Statistics (SATS-28 or
SATS-36), which was developed by Schau et al. (1995). The components of
these questionnaires consist e.g. of Affect, which uses six items to measure
the feelings of students towards statistics. Other components are Value
and Cognitive Competence, which measure the perceived usefulness and
relevance of statistics in students lifes as well as their own assessment of
their ability to learn statistics. Within the SATS-36 the component Interest
as a measure for students’ interest in statistics is added (Schau, 2003).
Furthermore, we are interested in the mental health impact of statistics on
students. On the one hand, we are interested in the students’ perception
of stress. To obtain data on this, we plan on using questions like those
used in an empirical report about stress perception among students in
Germany from Herbst et al. (2016). In those, the students are asked to
indicate how they perceive stress in different situations, e.g the level of
demands of their university courses as well as group work and the way
material is being taught (Herbst et al., 2016). On the other hand, data on
the relationship with fellow students will be collected. Therefore, questions
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regarding social support are necessary. We plan to use a questionnaire
adapted to our conditions (concentrating on fellow students) like the short
form of the Social Support Questionnaire (F-SozU) (Fydrich et al., 2009).
Our proposed model for analysis is a cumulative ordinal regression model
(Fahrmeir et al., 2013). Our response variable Yi ∈ {1, ..., c + 1} consists
of the attitude of students towards statistics as well as their perceived
stress and social support. It is categorical and measured on an ordinal
5 or 7-point Likert scale. Regarding the attitude towards statistics, 1
equals ”Strongly Disagree” and 7 equals ”Strongly Agree” with 4 equaling
”Neither Disagree or Agree” (Schau, 2003). Our covariates xi are going to
be the age, gender, math grade in university course and in school and the
number of prior statistics courses of the students. Additional covariates on
a Likert scale are going to be the students own rating of their mathematical
abilities (Lavidas et al., 2020), their enjoyment of the game and their
feeling of loneliness/social inclusion in the student body of the respective
semester. Furthermore, the model contains covariates regarding the degree
of participation in the game and the comprehension of the relevance of data.

For the analysis we plan to use a cumulative ordinal regression model:

Yi = r ⇐⇒ θr−1 < ui ≤ θr, r = 1, ..., c+ 1, (1)

where Yi is the ordinal response variable, that is linked to a latent variable
ui via the ordered thresholds −∞ = θ0 < θ1 < ... < θc+1 =∞.
The covariates are modelled as linear predictors as follows:

ui = −xiβ + εi. (2)

Using this set up, we plan to estimate the probability of a student being in
or below a certain category in terms of attitude towards statistics, perceived
stress and social support (Tutz, 2011). For this, our Yi will be students’
affect, cognitive competence, interest and value regarding statistics as well
as their risk of loneliness and stress associated with group work and data.
Using a 5 and 7-point scale, we have four and six thresholds respectively.

5 Conclusion and outlook

For further didactic purposes the game can be adapted in different ways.
For example, an additional penalty for insufficient contract fulfillment can
be added to further risk awareness regarding ones prediction. All in all,
the game offers an easy introduction to data competencies for economic
students. Within this simple game they can experience the need for dif-
ferent types of data. They also experience first hand that not all available
data is always necessary and that some additional data (to the freely given
information) should be gathered. They also come into contact with differ-
ent calculations within R. The goal of our planned analysis is to see if a
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hands-on approach such as the presented game of an introduction to data
competencies is beneficial to the motivation of students regarding statistics.
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Abstract: Automated feature selection methods such as the Least Absolute
Shrinkage and Selection Operator (LASSO) have recently gained importance in
the prediction of quality-related outcomes. However, the methods that have been
used so far, usually, do not account for the fact that patient data are typically
nested within hospitals. Therefore, we aim to demonstrate how to account for the
multilevel structure of hospital data with LASSO and compare the results of this
procedure with a LASSO variant that ignores the multilevel structure of the data.
We find that inserting hospitals leads, at least partly. to better predictions and
in some instances, the variable importances differ greatly between the methods.
In summary, we show that it is possible to take the multilevel structure of data
into account in automated predictor selection and that this leads, to better pre-
dictive performance. From the perspective of variable importance, including the
multilevel structure is crucial to selecting predictors in an unbiased way under
consideration of the structural differences between hospitals.
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1 Background

Performance metrics such as Duration Stay or indicators of the quality of
care such as Mortality Rates are widely used to assess healthcare providers’
performance. A broad branch of research has identified predictors that
explain differences in such measures both at the patient as well as the
provider level.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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Recent improvements in data availability have increased the number of
healthcare-related variables as possible predictors of these performance
metrics (e.g., with regard to quality of care, see Schwartz et al., 2017).
Consequently, the use of automated feature selection tools like the least
absolute shrinkage and selection operator (LASSO) have become more and
more popular to facilitate variable selection, and studies have demonstrated
its superiority in prediction accuracy (e.g. Harris et al., 2019). In general,
there has been great progress in collecting large amounts of data to identify
predictors for quality of care using automated variable selection methods.
However, all these studies face a methodological challenge that remains
unresolved: The nested structure of the hospital data.
All in all, there is relatively great unanimity regarding the general impor-
tance of accounting for the multilevel structure of hospital data (see e.g.
Dimick et al., 2012) and it has been shown that estimated relationships
change dramatically depending on whether hospitals are included as ran-
dom effects or not (Austin and Alte, 2003; Hofstede et al., 2018). Unfortu-
nately, there is a lack of research regarding the integration of the multilevel
structure of data sets in the automated feature selection process.
To address this research gap, our goals were, on the one hand, to examine
whether taking hospital clustering into account provides better predictive
performance, and on the other hand, to see whether it leads to a different
set of selected variables. Therefore, we investigated a LASSO variant that
incorporates the estimation of random effects, i.e., a LASSO for general
linear mixed models (GLMMs; Groll and Tutz, 2014).

2 LASSO for clustered data

The idea of LASSO is to impose a penalty term on the size of the coefficients
that addresses their absolute values:

Jlasso(βββ) = λ

p∑
j=1

|βj | .

This penalty term comes with the desirable feature of enabling variable
selection, as the coefficient estimates can be shrunk down to exactly zero
due to the absolute value function. However, the corresponding optimiza-
tion becomes more cumbersome and the LASSO estimator does not exist
in closed form. Instead, numerical methods must be used. To implement
the classic LASSO, we use the R package glmnet (Friedman et al., 2010).
In the case of clustered data, however, it is also necessary to account for
potential cluster-specific and unobserved heterogeneity during the variable
selection process. One option is to incorporate random intercepts for hos-
pitals into the regularized regression model within the GLMM framework.
We use the implementation in the glmmLasso R package (Groll, 2022).
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3 Application to example data

We used a national health administration data set provided by the Swiss
Federal Statistical Office. It contains all inpatient cases treated in Swiss
hospitals in 2019 with a main diagnosis of chronic obstructive pulmonary
disease (COPD, n = 12,404) with 32 potential predictors including clin-
ically relevant variables and demographic information. We predicted the
continuous outcome Duration Stay that indicates how many days a patient
was hospitalized. Additionally, we predicted the binary outcome Mortality
that indicates whether a patient died during the hospitalization. In doing
so, we aimed to examine how well the different LASSO variants can deal
with both continuous and binary data.
We used a 20-fold sub-sampling procedure to evaluate the predictive per-
formance of the different LASSO methods. Since some of our models also
contained random effect estimates for each hospital, which can be used
for the calculation of the deviance, we decided to include the requirement
that each hospital from the test data was also represented in the train-
ing data with at least one observation. Moreover, note that the outcome
Duration Stay was highly positively skewed and therefore needed to be
log-transformed before the analyses.
To assess predictive performances, for the outcome Duration Stay, we used
the mean squared error (MSE) on the test data. For the binary outcome
Mortality, we used the area under the Receiver Operator Characteristic
(ROC) curve (AUC, Hanley & McNeil, 1982). Both measures were averaged
over the 20 sub-samples.
Additionally, for the outcome Duration Stay, we examined how variable
importance and thereby variable selection changes when hospitals are in-
cluded. To this end, we registered the five variables from all 20 data
sets with the largest absolute coefficients in the model selected via cross-
validation (see Table 1).
As previously mentioned, we generally distinguished between standard,
fixed-effects-only LASSO models via glmnet (No hosps) and the LASSO
variant including random effects via glmmLasso (Hosps random). In addi-
tion, we included glmnet with fixed-effects for the hospitals (Hosps fixed)
as an intermediate solution for comparison.
Additionally, we used different procedures for the tuning of λ: (1) K-fold
cross-validation (CV) and (2) information criteria-based approaches using
AIC or BIC.

4 Results

The MSEs for the outcome Duration Stay are summarized in Figure 1. It
can be seen that including the hospitals, whether as fixed or as random ef-
fects, leads to considerably better results (i.e. lower MSEs). However, there
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FIGURE 1. MSE (means and standard error bars) for the outcome Duration
Stay for different LASSO variants.

is little difference between the different variants of including the hospitals
and the various optimization criteria within those variants, except that the
MSE is larger for the fixed BIC.

0.70

0.75

0.80

0.85

0.90

no hosp
 min

no hosp
 1se

no hosp
 AIC

no hosp
 BIC

fixed
 min

fixed
 1se

fixed
 AIC

fixed
 BIC

random
 min

random
 AIC

random
 BIC

FIGURE 2. AUC (means and standard error bars) for the outcome Mortality.

Figure 2 shows mean AUC values and standard error bars for the results of
the different LASSO variants on the binary outcome Mortality. According
to generally accepted thresholds (see e.g. Hosmer et al., 2013), all variants
achieve acceptable performance. Additionally, the AUC values show only
small differences between the different variants and it does not seem to
make a substantial difference whether hospitals are included or not. The
only exception is random BIC that yields slightly lower performances.
A summary of the variable importance in Table 1 shows a substantial dif-
ference between the different variants depending on the inclusion of hospi-
tal effects. Particularly interesting is the variable Planned admission, that
specifies whether patient admissions were planned and thus distinguishes
elective admissions from emergency admissions. It has a large positive ef-
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TABLE 1. Variable importances for the CV selected model concerning COPD
data for the outcome Duration Stay for different LASSO variants.

Variable no hosps hosps fixed hosps random

Adm from hospital 100% (.16) 100% (.11) 100% (.10)
Pre-MDC 100% (.22) 100% (.17) 100% (.19)
Part medical 100% (-.21) 100% (-.19) 100% (-.23)
MDRG E65 100% (.25) 100% (.13) 100% (.18)
elix 23 0% (–) 100% (.11) 100% (.11)
Planned admission 100% (.13) 0% (–) 0% (–)
elix 1 0% (–) 100% (.07) 0% (–)
elix 30 0% (–) 100% (.07) 0% (–)
elix 24 0% (–) 70% (.06) 0% (–)
Emergency 0% (–) 30% (-.06) 0% (–)

Note. Rates of being among the five most important variables (according to

absolute values of regression coefficients) across the 20 sub-samples in percent;

in brackets: mean estimated regression coefficient over all sub-samples.

fect on Duration Stay whenever hospitals are not specifically included in
the variable selection.

5 Discussion

We found an improvement in predictive performance in models that in-
clude hospitals compared to those that do not include them, at least for
the continous outcome. More importantly, however, we found that variable
importance changes when hospitals are included. Some variables go from
being among the top five for all 20 sub-samples to no longer being in the
top five for any of the sub-samples when hospital effects are included. Such
differences can, of course, lead to completely different interpretations of
dependencies between predictor variables and the outcome. Another con-
sequence of our results is that the comparison of selection results from dif-
ferent approaches (i.e., with or without the consideration of hospital effects)
could be used to learn about dependencies within the data in a data-driven
way. More specifically, it may support researchers to assess which variables
are mainly associated with hospital characteristics and which are primarily
related to patient characteristics.
Based on our findings, we recommend that the natural clustering of hospi-
tal data already should be considered when selecting predictor variables for
prediction purposes or the risk-adjustment of quality indicators, in contrast
to only considering it in the final modeling stage (once the predictors have
been selected). This approach leads to predictions that are better or at least
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as good as when not considering hospital effects. In addition, when hospi-
tal effects are not included, interpretations of the importance of predictor
effects and, therefore, dependencies among variables can be distorted.
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1 Introduction

Wildlife ecologists all over the world use camera traps for estimating the
population sizes of different animal species and for other research questions
such as assessing animal interactions, animal-plant interactions, or animal-
human interactions. These camera traps produce high amounts of image
data which have to be classified with respect to animal species before tack-
ling downstream tasks. Annotation of images by human experts is possible
but very time-consuming, which is why this task shall be automated. While
there exist many methods from the field of deep learning (DL) that tackle
image classification and claim good predictive performance, oftentimes it is
challenging to reproduce similarly convincing results in applied use cases.
There are, among others, two main reasons that hinder applied researchers
from making use of previously proposed DL methods: (A) there is a va-
riety of hyperparameters that have a strong influence on the performance
– selecting the best hyperparameters is a complex process which calls for
careful resampling strategies and (B) there is no all-encompassing answer
to the question, how many images of each class are needed to learn a good
model. We propose a framework to solve this (A) by designing a resam-
pling strategy that allows optimizing the hyperparameters with respect to
out-of-sample predictive performance, (B) by developing an active learning
pipeline to enable human-in-the-loop training to allow training with in-
creasing amounts of images until a sufficient performance is achieved, and
(C) by publishing an open-source software package in Python implementing
this framework.

2 Data and Methods

To demonstrate our framework, we use image data from a study site in
Bavaria, Germany, comprising 48,116 images of 8 classes (European hare,
red deer, red fox, red squirrel, roe deer, wild boar, others, empty) at 37
camera stations.
Image Classification Pipeline: The core image classification pipeline
consists of two main parts: (A) an object detection model which detects
bounding boxes of animals in the images and (B) an image classification
model which classifies the previously identified bounding boxes with respect
to the above classes. As an object detection model, we use the Megadetector
by Beery et al. (2019). This outputs the coordinates of the bounding boxes
of animals, together with a confidence c(i) ∈ [0, 1] that the detected object
in bounding box i is in fact an animal. Bounding boxes where the confi-
dence exceeds a threshold α (a tunable hyperparameter) are passed on to
the image classifier – images without such bounding boxes are considered
empty. For the image classifier, we use transfer learning based on different
pre-trained image classification networks. The choice of the network and
the number of finetuned layers are tunable hyperparameters.
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Hyperparameter Tuning: Tuning the hyperparameters of this two-stage
classification pipeline demands a carefully designed resampling strategy to
avoid any information leakage between training, validation, and test data.
Figure 1 visualizes our version of nested resampling for hyperparameter
tuning.

D = Whole Dataset (100%)

D_Tune (85%) D_Test (15%)

train model pi_j 
with architecture_j

=> best hyperparameters l* and 
corresponding model pi*

highconf BB other BB

=> predict with pi*

=> test classifier

merge on image level

=> test pipeline

D_Train (70%) D_val (15%)

highconf BB (train) highconf BB (val)

>=md_thresh_j

predict with pi_j

>=md_thresh* <md_thresh*

predict on image 
level

<md_thresh_j

other BB (val)

merge on image level

=> validate pipeline

predict on image 
levelFor each 

hyperparameter 
combination l_j

FIGURE 1. Resampling strategy. md thresh is the Megadetector threshold α,
highconf BB are bounding boxes with confidence above md thresh.

Active Learning Pipeline: We propose an active learning (AL) pipeline
in order to use the available data most efficiently as human-in-the-loop. The
pipeline consists of the steps (1) Initialization (provide unlabeled data)
(2) AL loop (while predictive performance does not exceed pre-specified
threshold, do:) (2a) Image selection (select unlabeled images via an acqui-
sition function such as softmax entropy) (2b) Manual labeling (expert labels
images) (2c) Model training (tune, train, evaluate model) (3) Prediction
(predict remaining unlabeled images with the latest model).

3 Results

As a glimpse of the results, we show how hyperparameter tuning improves
the performance at the example of the confidence threshold α in Table 1.
The most common choice (as, e.g., in Norouzzadeh et al., 2021) is α = 0.9
– tuning (α = 0.253) improves the false positive rate (FPR) by a factor of
> 2.
Figure 2 shows how the predictive performance increases with using more
images during active learning. Using a relative sample size of about 40%,
we already reach 97% of the 8-class accuracy of the upper baseline.
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TABLE 1. Performance for empty (0) vs. non-empty (1) images.

Confidence α Accuracy Precision Recall FPR F1

0.253 0.953 0.964 0.976 0.024 0.970
0.5 0.949 0.973 0.963 0.037 0.968
0.9 0.942 0.978 0.948 0.052 0.963

0.0 0.2 0.4 0.6 0.8 1.0
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0.700
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FIGURE 2. Comparison of 8-class accuracy for different amounts of training
images used in active learning. Lower baseline: Training only on other camera
stations. Upper baseline: Training with all available data. Warm start: Initialize
weights as trained on other camera stations.

4 Conclusion

We proposed to improve image classification tasks by using active learn-
ing and sensible hyperparameter tuning and showed the benefit of both
components with real-world data. An implementation of the framework
and example code to reproduce the results will be made available upon
acceptance.
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Keywords: differentiable approximation; Laplace distribution; robust regression

1 Introduction

Consider the linear regression model

yi = xT

i β + σεi,

which is fundamental to statistical modelling. Here, yi is the response vari-
able for the ith individual, xi is the vector of covariates with coefficients β,
σ is a dispersion parameter, and εi a random error. Assuming a symmetric
error distribution, this is a model for the mean of yi, i.e., µ = E(Yi) = xTi β.
Classically, estimation may proceed using least squares,

min
β

∑
i

(yi − xT

i β)2,

equivalent to assuming a Gaussian error density, f(ε) = exp(−ε2/2)/
√

2π,
or least absolute deviations

min
β

∑
i

|yi − xT

i β|,

equivalent to assuming a Laplace error density f(ε) = exp(−|ε|)/2. Least
absolute deviations yields β estimates that are less sensitive to outliers, and
is therefore known as robust regression. However, unlike least squares, it
is non-differentiable so that simplex optimisation procedures are typically
used, e.g., see the L1pack package in R (Osorio, F. and Wolodzko, 2022).

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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2 Differentiable optimisation
Rather than using simplex procedures, we instead make use of the fact that
the absolute value function |z| can be approximated by

aτ (z) =
√
z2 + τ2 − τ,

for τ > 0, in the sense that aτ (z) → |z| as τ → 0. The advantage of the
function aτ (z) is that it is differentiable, i.e.,

a′τ (z) =
z√

z2 + τ2
,

meaning that, from a statistician’s perspective, more standard Newton-
type estimation can proceed (in contrast to the use of simplex methods).
This differentiable approximation has been used previously in the context
of smooth penalised regression for the purpose of variable selection
(Jaouimaa et al, 2019; Burke and Patilea, 2021).

Therefore, in the context of Laplace regression, we consider β estimation
using the differentiable objective

min
β

∑
i

aτ (yi − xT

i β),

which is equivalent to the use of a smooth (differentiable) Laplace error
density,

f(ε) = cτe
−aτ (ε)/2,

where cτ is a normalising constant that is required upon replacing |ε| with
aτ (ε) in the Laplace density function, but note that cτ ≈ 1 when τ is small.

We can also form a log-likelihood function for β and σ

ℓ(β, σ) = n log cτ − n log σ −
∑
i

aτ

(
yi − xT

i β

σ

)
,

and this is differentiable in β and σ; for simplicity of implementation, we
make use of the nlm optimiser in R. Note that the constant cτ is not needed
for the estimation of these parameters, but, of course, would be required
for comparing this model to other models, for example, using the Bayesian
Information Criterion. In any case, although cτ must be computed numer-
ically, it can be pre-computed for the given τ value that is being used.

3 Data example

We consider the so-called “stack loss” dataset, which is commonly used
as an exemplar for robust regression (Brownlee, 1960). It relates to an
industrial process for oxidising ammonia to nitric acid, where the response
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variable stack loss is a measure of inefficiency, and there are three input
process variables, namely, air flow, water temp, and acid conc.

Table 1 displays the estimated β coefficients from the smooth Laplace re-
gression for three values of τ along with the output of the L1pack (which
makes use of a true absolute value). We can see that the results for the
smooth optimiser are very similar to that of L1pack, especially at the small-
est value of τ = 0.01 displayed here. In particular, we see that air flow and
water temp increase inefficiency while acid conc decreases inefficiency.

TABLE 1. Fitted models

Covariate τ = 0.5 τ = 0.1 τ = 0.01 L1pack

air flow 0.83 0.83 0.83 0.83
water temp 0.69 0.59 0.57 0.57
acid conc -0.10 -0.07 -0.06 -0.06

4 Summary

The use of a smooth approximation to the absolute value function gener-
ates differentiable Laplace regression (i.e., robust regression). This enables
the use of Newton-type optimisation, which will be more familiar to statis-
ticians. We believe that the the differentiable absolute is useful more gen-
erally outside of robust regerssion, and, indeed, it has been used previously
in penalised regression for the purpose of variable selection.
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Abstract: We introduce the R-package TwoTimeScales for the analysis of time
to event data with two time scales. The package provides tools to estimate a
smooth hazard that varies over two time scales and also, if covariates are available,
to estimate a proportional hazards model with such a two-dimensional baseline
hazard. We describe the features of the package and illustrate options for presen-
tation of results. As an example we analyse mortality of patients with a recurrence
of colon cancer.

Keywords: R-package; Time-to-event data; Time scales; P -splines.

1 Introduction

Time to event data can involve more than one time scale. For example, in
medical and epidemiological studies, time since disease onset and age of the
patient (which is time since birth) may jointly determine the occurrence of
an event, such as death or relapse. The hazard over two time scales can be
modelled by two-dimensional P -splines, and Carollo et al. (2020) described
an approach to estimate this model. In case there are covariates available,
the approach can be extended to a proportional hazards (PH) model with
a baseline hazard varying over two time scales. To efficiently estimate this
model array algorithms are employed (see Currie et al. (2006)). This is
particularly relevant in the PH setting.
To make statistical models accessible for data analyses and to promote
their usage statistical software is essential. Therefore we developed the R-
package TwoTimeScales which implements the model presented in Carollo

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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et al. (2020). Here we describe the features of the package and illustrate
some of its capacities to present results.
As an example, we will use data on colon cancer patients and will study
mortality of patients who experienced a relapse. The two time scales are
time since randomization (after surgery) and time since recurrence. Addi-
tional covariates are included in a PH regression model. The data are avail-
able in the R-package survival (Therneau (2023)). In the following section
we briefly summarize the essential components of the P -spline model for
two-dimensional hazard models. In Section 3 we then describe the func-
tionality of TwoTimeScales along the colon cancer example.

2 Smoothing hazards with two time scales

The two time scales are denoted by t (here: time since randomization)
and s (here: time since recurrence), where the origin of s is later than the
origin of t, so that t > s. The vector of covariates is denoted by z. In
the example the event of interest is death. We would like to fit the PH
model λ(t, s; z) = λ0(t, s) exp(βTz), where λ0(t, s) is the smooth baseline
hazard over t and s. β is the vector of regression coefficients. Equivalently
we can express the model via u = t − s, where u is the time when s = 0
(here: time between randomization and recurrence). The value of u differs
between individuals. Hence

λ(t, s; z) = λ0(t, s) exp(βTz) ≡ λ̆0(u, s) exp(βTz), (1)

and we can estimate λ̆0(u, s) over u > 0, s > 0.
To estimate the model the (u, s)-plane is divided into small squares of
equal size, and for each individual the number of events and the time
at risk in each square is determined. The smooth log-baseline hazard
η0(u, s) = ln λ̆0(u, s) is modelled as a linear combination of tensor products
of B-splines, the coefficients are constrained by a roughness penalty. The
model is fitted via penalized Poisson regression (for details see Carollo et
al. (2020)). Model estimation hence requires two steps: Transforming the
input data into the matrices of events and exposures, and then maximizing
the penalized Poisson log-likelihood (using array algorithms) for an optimal
choice of smoothing parameters.

3 The TwoTimeScales package

The R-package TwoTimeScales provides a suite of functions to estimate
model (1) and to present results. The user typically will have to interact
with three functions only, see also Figure 1.

prepare data() performs the two-dimensional binning in individual
event- and exposure-matrices and it also sets up the covariate ma-
trices (in the case of a PH model) for the array algorithm. The user
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Step 3 - Visualize results:
• Input object returned from fit2ts

• Denser grid for plotting (optional)
• (log-)hazard in original or transformed plane
• With covariates‘ effects or not
• Plot SEs surfaces for the (log-)hazard

Step 1 - Data preparation:
• Create grid of bins: return list bins_list
• Bin the exposures and the event counts:

return R and Y

• Prepare covariates: return Z

Step 2 - Search for and fit the optimal 2d GLAM:
• Input data created with prepare_data
• B-splines specifications
• Optimization method and criterion
• Starting or grid values for smoothing parameters

FIGURE 1. Flowchart of main package functions and example of their usage.

provides the bin widths for u and s and the names of variables that
contain entry and exit times, respectively, the event indicator and, if
applicable, the covariates.

fit2ts() performs the actual estimation. Its input most likely was created
by prepare data(). The user provides information on the B-splines
specification for the baseline hazard, the criterion that should be min-
imized (AIC or BIC) and whether a grid search over the smoothing
parameters should be performed or numerical optimization should
be used. Correspondingly, either grid values or starting values for
the smoothing parameters can be given. The results of this function
contain, among others, the parameter estimates (including standard
errors), optimal smoothing parameters, AIC/BIC values, the effective
dimension of the estimated model.

plot haz2ts() offers several figures to visualize the results. This includes
the estimated (log-)hazard in (t, s)- or (u, s)-coordinates and an im-
age plot of its standard errors. If a PH model was estimated, the
regression coefficients and their 95% confidence intervals (or the cor-
responding hazard ratios) can be plotted. If a grid search was per-
formed the AIC- (BIC-) profile can be shown. Graphical parameters,
such as the color palette, can be changed. Figures 2 and 3 show some
output for the colon cancer example.
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FIGURE 2. Baseline hazard by time since randomization and time since recur-
rence (left). Estimated covariate effects and 95% confidence intervals (right).
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FIGURE 3. AIC profile (left), with ρu and ρs smoothing parameters. Standard
errors (right) for hazard in Fig. 2.
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1 Motivation and underlying mixture model

The practice of earnings management by firms have been long recognized
by researchers. Accounting literature have shown that they are inclined to
manage their accounting profits and losses to exceed specific thresholds such
as zero earnings, earnings of prior year or analysts’ forecasts (Burgstahler &
Chuk, 2017). Since the pervasiveness of earnings management significantly
compromises the integrity of financial reporting, regulators or investors are
interested in detecting earnings management and identifying its frequency
and its magnitude.
In this communication, a new statistical methodology to detect earnings
management associated with the zero earnings threshold is presented and
is illustrated on simulated data very similar to real data.
In the following, a statistical model will first be detailed in order to model
this earnings management phenomenon. Then a simplified model will then
be considered. The procedure for estimating the parameters of the simpli-
fied model will then be described.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).



Chavent et al. 395

2 Statistical model for earnings management

To recover the frequency and the magnitude of earnings management across
all the firms, the true earnings must be modelled. Let us denote by Xi the
true earnings of the firm i, i = 1, . . . , n. Note that these true earnings are
unobservable. The true earnings Xi are assumed to be independent and
identically distributed: Xi follows a mixture of two Gaussian distribution
of density

πφA(x) + (1− π)φB(x),

where π ∈]0, 1[ and φA (resp. φB) is the density of the Gaussian distribution
with mean µA (resp. µB) and variance σ2

A (resp. σ2
B). The choice of a

Gaussian mixture allows modelling a distribution with tails of different
weights, as it is often observed on the underlying data.
When a firm has an actual true earning value below the zero threshold
value, this firm may engage in earnings management and the corresponding
reported earning will be greater than the zero threshold value. Only the
reported earnings Yi, i = 1, . . . , n, are observable.
When earnings management is effective for a firm i, the reported earning
Yi is assumed to follow the Exponential distribution with parameter λ,
otherwise Yi follows the same distribution as Xi. In order to model the
transition to earnings manipulation for a firm i, the random variable Ti is
introduced: when Xi is less than the zero threshold value, Ti given Xi =
x follows a Bernoulli distribution of parameter τ(x). Note that the true
frequency of earning management p can be obtained from τ(.).

3 A simplified statistical model and its parameter
estimation procedure

The underlying idea is to focus only on the subpopulation of firms asso-
ciated with the Yi’s greater than the zero threshold value. From a math-
ematical point of view, the work is implicitly developed conditionally to
Y ≥ 0. The corresponding reported earnings of these firms can be viewed
as a mixture between “true” earnings and “managed” earnings, which can
be modelled as follows:

∀y ≥ 0, f(y) = qf1(y) + (1− q)f2(y), (1)

where q ∈]0, 1[, f1 is the density of the Exponential distribution with rate
parameter λ, and f2 is the density of a mixture of two truncated Gaussian
distributions:

∀y ≥ 0, f2(y) = π̃φ
(+)
A (y) + (1− π̃)φ

(+)
B (y),

where φ
(+)
A (resp. φ

(+)
B ) is the density of the truncated Gaussian

distribution with mean µA (resp. µB) and variance σ2
A (resp. σ2

B)
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defined as follows: ∀t ≥ 0, φ
(+)
A (t) =

φA(t)

CA
, with CA =∫ +∞

0

1√
2πσ2

A

exp

(
− (s− µA)

2

2σ2
A

)
ds = Φ

(
−µA
σA

)
with Φ(t) = 1 − Φ(t)

and Φ the cumulative distribution function of the standardized Gaussian
distribution. The underlying parameter of the simplified model is thus:

θ =
(
q, λ, π̃, µA, σ

2
A, µB , σ

2
B

)
.

Given the observed sample of the reported earnings Dn = {y1, . . . , yn}, the
objective is to estimate θ as the maximum of the likelihood

θ̂ =
(
q̂, λ̂, ˆ̃π, µ̂A, σ̂

2
A, µ̂B , σ̂

2
B

)
:= arg max

θ
ℓ(θ;Dn)

where ℓ(θ,Dn) =
∏n
i=1 f(yi). For that purpose, an expectation–maximiza-

tion (EM) algorithm (see Dempster et al., 1977) has been developed. This
algorithm relies on the complete-data likelihood based on two dichotomous
latent variables: T̃i (resp. Z̃i) which follows a Bernoulli distribution with
parameter q (resp π̃). The latent variable T̃i indicates whether the firm i
has managed earnings or not, while the variable Z̃i is used to manage
the mixture of the two truncated Gaussian distributions. The “completed”
density is:

f(y, t, z; θ) = (qf1(y))
t
(1−q)1−t

(
π̃φ

(+)
A (y)

)(1−t)z (
(1− π̃)φ

(+)
B (y)

)(1−t)(1−z)
.

Assuming that the (Yi, T̃i, Z̃i)’s are independent, the “completed” log-
likelihood is written this way:

ℓℓ(θ;Dn,Ln) =
∑n
i=1 [ti log(q) + (1− ti) log(1− q) + ti log(f1(yi))

+ (1− ti)zi log(π̃) + (1− ti)zi log (φA(yi))
+ (1− ti)(1− zi) log(1− π̃) + (1− ti)(1− zi) log (φB(yi))
− (1− ti)zi log(CA)− (1− ti)(1− zi) log(CB)] ,

where Ln = {t1, . . . , tn, z1, . . . , zn} ∈ {0, 1}2n.

The EM algorithm is an iterative method which starts from θ̂(0), an initial
value of the parameter θ, and provides at each iteration j

θ̂(j+1) := arg max
θ

E
[
ℓℓ(θ;Dn, T1, ..., Tn, Z1, ..., Zn) | Dn; θ̂(j)

]
(2)

where θ̂(j) =
(
q̂(j), λ̂(j), ˆ̃π(j), µ̂A(j), σ̂

2
A(j), µ̂B(j), σ̂

2
B(j)

)
is a current estima-

tion of θ. Note that, since the EM algorithms are known to be sensitive to
initialization, an “expert” data-driven initialization (not detailed here) has
been proposed and provides relevant numerical results in the considered
simulation study. The two steps (E and M) can be described as follows.
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• The E step provides estimates of the conditional expectations of the
latency variables such as, ∀i = 1, . . . , n,

< ti >j+1 = Ê
(
T̃i|θ̂(j),Dn

)
= P̂

(
T̃i = 1|θ̂(j), yi

)
=

q̂(j)f1,λ̂(j)
(yi)

q̂(j)f1,λ̂(j)
(yi) + (1− q̂(j))

(
ˆ̃π(j)φ̂A(j)(yi) + (1− ˆ̃π(j))φ̂B(j)(yi)

) ,
and

< zi >j+1 = Ê
(
Z̃i|θ̂(j),Dn

)
= P̂

(
Z̃i = 1|θ̂(j), yi

)
=

ˆ̃π(j)φ̂A(j)(yi)

ˆ̃π(j)φ̂A(j)(yi) + (1− ˆ̃π(j))φ̂B(j)(yi)
,

where f1,λ̂(j)
stands for the Exponential distribution with rate parameter

λ̂(j) and φ̂A(j) (resp. φ̂B(j)) for the Gaussian distribution with mean µ̂A(j)

(resp. µ̂B(j))and variance σ̂2
A(j) (resp. σ̂2

B(j)).

• The M step solves the optimization problem (2) which provides:

q̂(j+1) =
1

n

∑n
i=1 < ti >j+1, λ̂(j+1) =

∑n
i=1 < ti >j+1∑n

i=1 < ti >j+1 xi
,

ˆ̃π(j+1) =

∑n
i=1(1− < ti >j+1) < zi >j+1∑n

i=1(1− < ti >j+1)
,

µ̂A(j+1) =

∑n
i=1(1− < ti >j+1) < zi >j+1 xi∑n
i=1(1− < ti >j+1) < zi >j+1

− σ̂A(j+1)

φ
(
−µ̂A(j+1)/σ̂A(j+1)

)
Φ
(
−µ̂A(j+1)/σ̂A(j+1)

) ,
σ̂2
A(j+1) =

∑n
i=1(1− < ti >j+1) < zi >j+1 (xi − µ̂A(j+1))

2∑n
i=1(1− < ti >j+1) < zi >j+1

+ σ̂Aµ̂A(j+1)

φ
(
−µ̂A(j+1)/σ̂A(j+1)

)
Φ
(
−µ̂A(j+1)/σ̂A(j+1)

) ,
µ̂B(j+1) =

∑n
i=1(1− < ti >j+1)(1− < zi >j+1)xi∑n
i=1(1− < ti >j+1)(1− < zi >j+1)

− σ̂B(j+1)

φ
(
−µ̂B(j+1)/σ̂B(j+1)

)
Φ
(
−µ̂B(j+1)/σ̂B(j+1)

) ,
σ̂2
B(j+1) =

∑n
i=1(1− < ti >j+1)(1− < zi >j+1)(xi − µ̂B(j+1))

2∑n
i=1(1− < ti >j+1)(1− < zi >j+1)

+ σ̂B(j+1)µ̂B(j+1)

φ
(
−µ̂B(j+1)/σ̂B(j+1)

)
Φ
(
−µ̂B(j+1)/σ̂B(j+1)

)
where φ is the density of the standardized Gaussian distribution.

One might notice that p̂(j+1), λ̂(j+1) and π̂(j+1) have explicit forms, while
(µ̂A(j+1), σ̂

2
A(j+1)) (resp. (µ̂B(j+1), σ̂

2
B(j+1))) are solutions of a nonlinear sys-

tem with two equations (which can be numerically solved using a specific
iterative algorithm, not detailed here).
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4 Illustration on simulated datasets

In this numerical study, two scenarios have been considered. The corre-
sponding simulated datasets of size n = 2000 have been generated from
Model (1) with the value of θ described in Table 1. In the first case, it
is relatively easy to identify and estimate all the components of θ. The
second one is more complex, but corresponds to more realistic situations
in the context of earnings management. It is strongly inspired by the first
dataset used by Chen et al. (2010).

TABLE 1. Parameters used in the numerical study.

q λ π̃ µA σA µB σB

Simu. 1 0.1 12 0.3 1 1 4 0.5
Simu. 2 0.05 185.3 0.632 0.007 0.123 0.06 0.034

The obtained numerical results are respectively provided in Figures 1 and 2.
The true density and parameter values are plotted in blue, and the corre-
sponding estimated ones are plotted in green. In order to have visibility on
the variability of the estimators, B = 100 bootstrap samples were gener-
ated, and the associated parameters were then estimated. The variability
of the estimated density is provided via the Bootstrap 90% confidence in-
terval (in red), as well as those of the estimate of the components of θ via
the corresponding boxplots. It can be clearly observed that the estimation
procedure makes it possible to properly recover the θ parameters and thus
the true density of the Yi’s.

5 Concluding remarks

From the estimated parameter θ̂ of the simplified statistical model, it is
possible to obtain an estimation of the initial statistical model and to re-
trieve the frequency and the magnitude of earnings management on the
whole population of firms. Based on the Bootstrap variability, it will also
be possible to compare models based on two populations, as different coun-
tries, different sub-periods, or different categories of firms. Furthermore, as
listed by Byzalov and Basu (2019), there are other fields of application for
such methods, where a decision-maker has both an opportunity and an in-
centive to move from just below to just above a benchmark or vice versa,
through manipulation and/or extra effort.
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FIGURE 1. Simulation 1: true density (in blue) and estimated density (in green),
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with bootstrap variability (in red).
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Abstract: Forecasts of electricity net–load, consumption less embedded gen-
eration, are key inputs for operations such as trading and power production
planning. Here we focus on Great Britain’s power network, which is divided into
fourteen regions, the grid supply points groups. Each exhibits specific demand
and embedded power generation characteristics, implying that different models
should be used to predict net–load in each region. In addition, regional net–load
is determined by several social and meteorological factors, which interact with
each other. Given that including all possible interactions is infeasible from both
a statistical and a computational perspective, here we propose a model selection
method to automatically choose the main effects and the first–order interactions
to include in, region–specific, generalized additive models. The proposed method
combines gradient boosting for effect exploration and the Lasso for effect selec-
tion. The results from simulations and net–load electricity data demonstrate the
selective and predictive power of the proposed algorithm.

Keywords: Generalized Additive Models; Gradient Boosting; Model Selection;
Electricity Net–load Forecast.

1 Introduction

Electricity operators need accurate and interpretable short–term power de-
mand forecasts to make production planning, grid management, and trad-
ing decisions. In this context, Generalized Additive Models (GAM, Hastie
and Tibshirani, 1987) offer an attractive balance between flexibility and
interpretability. However, selecting which effects to include in a GAM is
a non–trivial task, particularly when interactions are considered. While
GAM model selection can be performed jointly with fitting via the L2Boost

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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algorithm (Bühlmann and Yu, 2003), the selected model often include
non–significant effects. This motivated the development of several methods
(see, e.g., Bühlmann and Hothorn (2010) and Strömer et al. (2022)) aimed
at enhancing variable selection for gradient boosting. Here we propose a
new method, which combines gradient boosting with the lasso (Tibshirani
(1996)), and that is specifically aimed at improving model selection when
considering interactions between covariates.

2 Methodology

Let X be a n × k matrix of covariates. Assume the response yi, with i =
1, . . . , n, follows the GAM model yi =

∑
s∈I fs(xi,s)+

∑
t∈C gt(xi,t1 , xi,t2)+

εi, where εi ∼ N (0, σ2). where I and C denote the set of main effects and
interactions, respectively. Then, proceed as follows:
Step 1: Use gradient boosting to fit a GAM model based on the base–
learners fs for s ∈ I1, where I1 is user–defined.
Step 2: Let F1 = (fs(xs))s∈I1

be the n × |I1| matrix whose columns
are the effects fitted in step 1. Hence, the fitted values from step 1 are
ŷ = F1 j1, j1 = (1, . . . , 1)T. Regress y on F1 via the lasso and let I2 be the
set of non–zero coefficients.
Step 3: Let C1 = {(i, j) | i, j ∈ I2, i < j} be the set of unique pairs of
indices in I2. Run L2Boost with main and interactive effects in I2 and C1
as base learners and store in I3 and C2 the selected effects indices.
Step 4: Denote with F2 = (fs(xs), gt(xt1 , xt2))s∈I3,t∈C2

the n×(|I3|+ |C2|)
matrix whose columns are the effects fitted in step 3. The fitted values from
step 3 are then ŷ = F2 j2, j2 = (1, . . . , 1)T. Regress y on F2 via the lasso and
let I4 and C3 be the final sets of selected covariate indexes and interactions.

3 Simulation Study

Table 1 ana 2 shows the results of a simulation study, consisting of 70 runs
of 2000 independent training and 2000 testing observations, generated by
yi =

∑8
j=1 fj(xi,j)+f(xi,2, xi,3)+εi, i = 1, . . . , 2000, where xi ∼ U([0, 1]),

εi ∼ N(0, σ2) and with fj ’s summarized below.

f0(x0) = x40 f1(x1) = x21 f4(x4) = 1
3
(1 + x4)5

f5(x5) = −(3x5 − 1.5)7+ f6(x6) = x6(1 + x6)3 f7(x7) = e2(x7+1)/2
−(4x5 − 0.5)3

f8(x8) = −10x8 f23(x2, x3) = − 1
2

(3 cos(x2 + x3) − 2 sin(x2))4

Additional 20 noise covariates following U([−0.5, 0.5]) were added to each
observation. Thin–plate and cubic regression splines were used as base–
learners for main effects and interactions, respectively. The step size ν in
gradient boosting was fixed to 0.1.
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TABLE 1. Results on simulated data. σ2 is the noise variance, MSEi and MSEgam

are mean squared errors obtained in steps 1, 4 and by fitting the response with
the true GAM model. R2 is the variance explained in step 4.

σ2 MSE1 MSE4 MSEgam R2

Mean sd Mean sd Mean sd Mean sd

2.8 5.995 0.667 2.883 0.268 2.813 0.278 0.952 0.002
4.0 6.522 1.128 4.067 0.527 4.022 0.519 0.903 0.003
8.8 10.352 3.499 8.945 2.503 8.833 2.755 0.659 0.011

10.5 11.794 3.882 10.680 3.558 10.538 3.866 0.578 0.011

TABLE 2. Frequency of selection for different values of σ. The last column,
denoted as fk, indicates frequencies of erroneously selected effects.

σ

f 0
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0
)
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1
)
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(x

2
)
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)
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)
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(x

5
)

f 6
(x

6
)

f 7
(x

7
)

f 8
(x

8
)

f 2
3
(x

2
,x

3
)

f k

2.80 1 0.99 1 1 1 1 1 1 1 1 0
4 0 0 1 1 1 1 1 1 1 1 0

8.80 0 0 1 1 1 1 1 1 1 1 0.07
10.50 0 0 1 1 1 1 1 1 1 1 0.51

4 Forecasting of regional net–load in UK

Half–hourly net–load and weather forecast data from Browell and Fasiolo
(2021) cover the period 2/1/2014–31/12/2018, totaling 91726 observations
for each GSP group. We focus on four groups: East England (A), London
(C), South West England (L) and North Scotland (P). We use 2018 data
for testing, the rest is split into three folds to select the number of boosting
steps via cross–validation.
To avoid bias selection all base–learners should have equal degrees of free-
dom (see Hofner et al., 2011). We fixed them to six. As base–learners, we
used thin–plate and cubic regression splines for main effects and interac-
tions, respectively. The step size ν in gradient boosting was fixed to 0.1.
Results are summarized in Tables 3 and 4.

5 Conclusion

Interpretability is indispensable for the operational adoption of new models
in high–stakes applications such as net–load forecasting. As demonstrated
by the examples discussed here, the proposed GAM model selection ap-
proach aids interpretability by reducing the number of effects in the model,
relative to gradient boosting, while not compromising accuracy. It also finds
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TABLE 3. Selected effects for GSP group models. From 1 to 8: day of the week,
day of the year, time of day, 2–week rolling mean net–load, wind speed at 10
metres, 48–hour rolling temperature, temperature, solar irradiance.

GSP 1 2 3 4 5 6 7 8 2–3 2–4 3–4 3–8 6–7

A • • • • • • • • • • •
L • • • • • • • • • • •
P • • • • • • • •
C • • • • • •

TABLE 4. Results on net–load data, for each GSP group. MSEi and ni are the
mean squared error and the number of smooths selected in steps 1, 3 and 4. R2

is the variance explained at the end of the procedure.

GSP n1 n2 n3 MSE1 MSE3 MSE4 R2

A 11 32 11 0.108 0.097 0.097 0.881
L 11 32 11 0.195 0.173 0.192 0.820
P 11 17 6 0.684 0.698 0.258 0.804
C 11 21 8 0.062 0.057 0.057 0.939

and selects first–order interactions in an automatic fashion. This is prac-
tically important when modelling net–load at a regional (or lower) level
of aggregation, because manual model selection is made difficult by the
fact that each region has different characteristics, and that the number of
candidate interactive effects is large.

Acknowledgments: Claudia Collarin PhD scholarship is funded by PON
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Abstract: Monitoring wind speed is essential to develop offshore wind farms.
However, recorded wind data often lack the necessary accuracy for understanding
the profitability of the wind farm, and even when they exist, they are scarce in
time or space. Intuitively, using multiple data sources could balance the trade-off
between scarcity and accuracy. A multi-fidelity framework in the form of the au-
toregressive Gaussian process is introduced to analyze wind speed reanalysis data
fusing datasets of different reliability and resolution to provide a more accurate
wind speed data product.
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1 Introduction

Offshore wind speed data are obtained through different means such as
in-situ field sampling using anemometric or Lidar technologies, or pro-
cessed satellite retrievals. The former provides high-fidelity (high quality)
and high-resolution measurements but is limited in temporal and spatial
coverage, while the latter offers larger coverage but with low-fidelity (low
quality) and low-resolution. Data fusion of two products can, in principle,
provide a more informative data stream.
The development of a series of offshore wind farms on the Italian Adriatic
coast is our motivational study case. The project known as Agnes (Adriatic
green network of energy sources) aims to build a hub for renewable energy.
For the wind speed data, the companies involved in the project rely on two
main data sources:

1. The ERA5 reanalysis data [ERA5 Data], which contains hourly wind
speed measurements from 1979 until the present.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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2. The wind climatology obtained through two Lidar installations. These
measurements tend to be more reliable than those of ERA; however,
they come as point samples, covering a minimal spatial surface.

We developed a simulation study using ERA5 reanalysis data (from the
Agnes location), from which we derived two datasets, one of high-fidelity
(HF), closer to the true wind speed, but with low temporal sampling rate,
the other of low-fidelity (LF) but with high temporal sampling rate. This
paper evaluates the performance of an autoregressive Gaussian process
(ARGP) [Le Gratiet L. & Garnier J.(2014)] for data fusion of multi-fidelity
data. Through the multi-fidelity framework, we aim to return predictions
that are more accurate and abundant than those based only on a single
data source.

2 Experimental Design

We have simulated two data sources (time-series) that resemble wind speed
measurements such that:

wsHF = f(x) + eHF (x) (1)

wsLF = f(x) + eLF (x). (2)

The wsHF represents the high-fidelity measurements, therefore closer to
f(x), the true wind speed at the index location x, while wsLF is a low-
fidelity measurement. The time-series are distinguished by the normally
distributed corruptions eHF and eLF , with the low-fidelity corruptions
(eLF1 ∼ N(2, 0.2) and eLF2 ∼ N(2, 1)) being roughly double that of the
high-fidelity corruption (eHF ∼ N(1, 0.2)). HF data are typically scarce,
therefore we performed an additional sampling of them of size N1 < N .
Starting from the ERA5 reanalysis wind speed data, we proceed with a
series of decompositions to extract the deterministic part of these data:
f(x), which we assume to be composed of a long term trend, a seasonal
pattern and potentially other cyclical components. Given a roughly normal
remainder, we can generate different wsHF and wsLF adding normally dis-
tributed errors. Figure 1 depicts an example of data constructed with such
an approach. Given such a design, we compared the model performances
of ARGP with two mono-fidelity models: the quantile gradient-boosted re-
gression tree (QGBRT) [Kriegler B. & Berk R. (2010)], a model often used
in wind forecasting that provides the prediction for all quantiles of a distri-
bution (hence a deeper understanding of the uncertainty), and a standard
GP. We controlled for different N1 sample sizes and used as a performance
metric the mean absolute deviation (MAE) of the residuals r = f(x)− Pi,
where Pi is the ith model prediction. The experimental comparison has
N = 850, 100 replications of randomly drawn errors eLF and eHF and the
sub-sample N1 index position.
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FIGURE 1. Comparison of the four generated signals: in orange f(x) the assumed
true wind speed, in violet wsHF the high-fidelity time-series, in dark orange a
low noise low-fidelity time-series wsLF1 and in turquoise a noisy version of the
low-fidelity data wsLF2.

3 Models

3.1 Multifidelity:ARGP

In the ARGP model, the high-fidelity data are modelled as a scaled sum
of the lower-fidelity data:

GPHF (x) = ρGPLF (x) + ϵ(x), (3)

where GPHF (x) is a Gaussian process modelling the HF data, GPLF (x)
a Gaussian process modelling the LF data, ρ is the degree of correlation
between the HF and LF data and ϵ(x) ∼ GP (µϵ,Σϵ) is an independent
Gaussian process denoting the error structure between HF and LF data.
Our simulation design presents a nested structure DHF ⊂ DLF ; therefore,
we can use the recursive formulation of the model proposed by [Le Gratiet
L. & Garnier J.(2014)], which guarantee an efficient maximum likelihood
inference.

3.2 Monofidelity: GP and QGBRT

In opposition to ARGP, we tested a standard Gaussian process (GP) fitted
only with LF and HF separately, denoted by the notation GPHF , GPLF and
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a QGBRT in which a quantile loss function is combined with a gradient-
boosted regression tree, also fitted using only one dataset and denoted by
QGBRTLF and QGBRTHF .

4 Results and Discussion
By comparing the models, with x being a time index, for different N1
high fidelity sample sizes, and low-fidelity noise setting eLF1 ∼ N(2, 0.2),
we obtained the results in Table 1. ARGP outperformed the other mod-
els for small N1 sample sizes, while for N1 > 160 its performance was
equivalent to those of GPHF and QGBRTHF . It also appears there is no
notable advantage with highly noisy data. For our simulation design, with
N1=32, the estimates from the ARGP which combined the low and high-
fidelity data were, on average, 1 m/s closer to the f(x), which consists of
a 16% improvement compared to the unprocessed information. The multi-
fidelity framework has been successfully applied to multiple environmental
applications; however, its application to a wind case study is new. This
work has illustrated that potentially modelling wind speed data with the
multi-fidelity framework is appropriate. To further improve the methodol-
ogy, three directions of future development have been identified: expansion
to include the spatial dimension, exploration of non-linear methodologies
for noisy data, and integration of techniques to address data skewness.

TABLE 1. MAE summary from 100 replications for a simulationw with differ-
ent N1 high- fidelity samples size, with low fidelity data error structure equal to
eLF ∼ N(2, 0.2); The table contains the performance of 5 models: two mono-fi-
delity GP, two mono-fidelity QGBRT and a multi-fidelity ARGP. In the paren-
thesis, the MAE standard deviation.

MODELS N1=32(sd) N1=96(sd) N1=160(sd)
GPLF (Time) 0.54(0.018) 0.54(0.018) 0.54(0.018)
GPHF (Time) 0.43(0.048) 0.32(0.011) 0.30(0.008)
ARGP(Time) 0.29(0.047) 0.29(0.060) 0.29(0.015)

QGBRTLF (Time) 0.55(0.020) 0.55(0.020) 0.55(0.020)
QGBRTHF (Time) 0.52(0.005) 0.39(0.021) 0.34(0.016)
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Abstract: Group penalized models have gained much interest recently due to
their ability to handle high-dimensional data with complex structures. This paper
proposes an extension of the adaptive non-convex penalty function introduced
in Cuntrera et al. (2022a) to a group penalized context. The proposed method
respects the grouping structure of the variables and simultaneously shrinks entire
groups towards zero to produce a sparse model. The performance of the proposed
method is evaluated through a numerical study and compared with the principal
competitors. Results show that the proposed method performs well and is a viable
option for variable selection.
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1 Introduction

In recent years, group penalized models have attracted much interest due
to their ability to deal with high-dimensional data with complex structures.
A grouping structure that collects the coefficients into groups with similar
properties or functions is present in many real-world scenarios where the
data are high-dimensional and exhibit the grouping feature. Typical exam-
ples of grouped variables are the dummies relevant to the same categorical
variable or the powers variables for polynomial terms. This is particularly
helpful in fields such as genetics and finance, where variables often occur in
groups and are naturally interdependent. Variable selection methods have
been proposed to address the challenges posed by these structures, such
as the group lasso (Yuan and Lin, 2006) and several concave group selec-
tion methods (e.g. group SCAD (Wang et al., 2007) and group MCP. By
simultaneously shrinking entire groups of variables towards zero, group pe-
nalised models attempt to take advantage of this structure and produce a

This paper was published as a part of the proceedings of the 37th Interna-
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sparse model. The interested reader can refer to Huang et al. (2012) for an
exhaustive review.
In this paper, we aim to extend the adaptive non-convex penalty function
introduced in Cuntrera et al. (2022a) to group penalized context, evaluating
the performance against the principal competitors by a numerical study.

2 Method

Although the setting of the problem may look different, the approach is
the same as the well-known statistical modelling problem with a penalty
function. The problem is to optimize a penalized objective function, such
that

β̂ = arg min
β
L(β) + pλ(|β|), (1)

where L(β) is the loss function, and pλ(|β|) is the penalty function, in-
dexed by the tuning parameter λ that controls the sparsity of the vec-
tor β (the higher the value, the sparser the vector of coefficients). Re-
garding the first term we can consider the general regression loss function

L =
∥∥∥y −∑J

j=1Xjβj

∥∥∥2
2
, where y is an n× 1 vector of the centred response

variable, Xj is an n× pj matrix of factor (i.e. groups of variables) and βj
is the pj-size coefficient vector, where j = 1, ..., J . Equation (1) allows for
either categorical or continuous factors. Notice that the ANOVA model is
a typical case where all factors are categorical, whereas the additive model
is one where all factors are continuous. However, it is possible to simultane-
ously include both categorical and continuous factors in the equation. The
penalized model is also easily extended to the context of generalised linear
models (as will be seen below).
The difference in the penalisation of ungrouped variables lies in the spec-
ification of the penalty function. Instead of penalizing the individual re-
gression coefficient, the penalty is based on the L2 norm of the J different
group of coefficients. Thus, for a given value of the tuning parameter λ,
if a j-th group of coefficients is selected, all the coefficients within it will
differ from 0. Generalising the penalty function introduced in Cuntrera et
al. (2022a), the group penalty in (1) is

pλ(|β|) = λ

J∑
j=1

√
2pjπνΦ

(
∥βj∥2
ν

)
. (2)

We call it as group Adaptive Non-Convex penalty function (group ANP),
where ν is an additional shape parameter. The selection of the additional
parameter ν is crucial since it determines the degree of bias of the non-
null estimates and has implications for both computational and inferential
aspects. Furthermore, the convergence rate of the estimated coefficients to
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the maximum likelihood estimates of the non-zero coefficients is also influ-
enced by the choice of ν: the lower ν, the faster the convergence rate. As ν
goes to infinity, the penalty function takes the form of the lasso penalty. On
the other hand, selecting a small value of ν results in a highly non-convex
penalty function, which can behave local optima in the objective function.
To ensure the uniqueness of the solution, it is possible to find a lower bound
for ν, denoted by νλ,min, for any given λ value. In this way, the solution
enjoys the oracle property defined by Fan and Li (2001), avoiding com-
putational issues. The interested reader can find details of the proposed
penalty function in Cuntrera et al. (2022b). Finding the solution to the
objective function is not trivial. We propose using the Alternating Direc-
tion Multiplier Method (ADMM), an algorithm that decomposes complex
optimisation problems into smaller, more manageable problems (Boyd et
al., 2011).
Let us consider the standard local quadratic approximation of the log-
likelihood function (McCullagh and Nelder, 1983). More precisely, assume

that β̂t is an appropriate initial point and define ηti = x⊤i β̂
t. Then, we can

approximate the minimizer of the objective function (1) using (2) as:

β̂t+1 = arg min
β

1

n

n∑
i=1

V ti (yti − x⊤i β)2 − λ
√

2pjπν

J∑
j=1

Φ

(
∥βj∥2
ν

)
,

where V ti = V (ηti) and yti = ηti + {yi − µ(ηti)}/V ti denotes the ith work-
ing response of the IWLS algorithm. The above approximation shows that
estimating β̂ involves solving a series of penalised weighted least squares
regression problems, which can be efficiently solved using the ADMM al-
gorithm. The problem results in the following linear equality-constrained
problem:

min
β,β̃

f(β) + g(β̃)

s.t. β − β̃ = 0,

where:

f(β) =
1

n

n∑
i=1

V ti (yti − x⊤i β)2, and g(β̃) = −λ
√

2pjπν

J∑
j=1

Φ


∥∥∥β̃j∥∥∥

2

ν

 .

3 Numerical study

We present the results of a numerical study aimed to evaluate the perfor-
mance of the extended adaptive non-convex penalty function in a group
penalised context compared to the main competitor, i.e group lasso, group
SCAD and group MCP. We perform the simulation following one of
the settings used by Yuan and Lin (2006): we simulated 15 latent vari-
ables, Z1, ..., Z15, following a centred multivariate normal distribution with
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Toeplitz correlation matrix Σjk = 0.5|j−k|. We then trichotomized each Zj
into three categories (0, 1, or 2), depending on whether it was less than
Φ−1(1/3), greater than Φ−1(2/3), or in between. Finally, we simulated the
response variable y from the following equation

yi = 1.8I(z1,i = 1)− 1.2I(z1,i = 0) + I(z3,i = 1) + 0.5I(z3,i = 0)+

+ I(z5,i = 1) + I(z5,i = 0) + ϵi, i = 1, ..., n,

where I(·) is the indicator function, ϵi ∼ N(0, 1) and n = 50. For each

of the 100 simulations, we calculated the average model error ME(β̂) =

(β̂ − β)′E(X ′X)(β̂ − β) for all the λ-values used, along with the AUC.

TABLE 1. Simulation results: averages and standard deviations in parenthesis of
model error and AUC.

Group ANP Group lasso Group SCAD Group MCP

AUC 0.930 0.922 0.928 0.918
(0.07) (0.08) (0.07) (0.09)

Model error 0.441 0.614 0.654 0.650
(0.08) (0.10) (0.11) (0.12)

Table 1 shows the results of the simulation. Looking at the AUC, all the
estimators have roughly the same performance. In terms of model error,
however, the differences are greater: the group ANP has a lower error than
its competitors, around 30% lower. Thus, the estimator is able to identify
the correct subset of groups of variables not equal to 0 slightly better than
its competitors, committing the smallest error (along the entire λ path).

4 Conclusion

In this paper, we have extended the adaptive non-convex penalty function
to the group penalized setting, which allows for the simultaneous selection
and estimation of group coefficients in high-dimensional data with complex
structures. We evaluated the performance of our method against the main
competitors, in a numerical study using simulated data. Our results show
that our proposed method outperforms the competitors in terms of model
error, indicating its superiority in selecting important groups of variables
with the lowest bias w.r.t. the true coefficients.
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acknowledge financial support from the University of Palermo (FFR2021-
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Abstract: Estimating generalized additive models for location, scale and shape
by means of a non-cyclical gradient-based boosting algorithm with fixed step
lengths can result in imbalanced submodel updates and long run times. Shrunk
optimal step lengths have been shown to solve these issues. We propose a new
way for obtaining adaptive step lengths based on algorithm intrinsic information
and implement a boosting algorithm for GAMLSS with the different step length
options for normal, negative binomial and Weibull distributed response variables.
We show in a simulation study that the new adaptive step length approach yields
similar results as shrunk optimal step lengths while reducing the run time. Addi-
tionally, the algorithm is applied to model mean and overdispersion of the number
of doctor’s visits using data from the Australian Health Survey.

Keywords: Step Lengths; Gradient Boosting; GAMLSS.

1 Boosting GAMLSS

In order to benefit from the known advantages of machine learning meth-
ods, component-wise boosting algorithms are used for estimating statistical
models, inter alia generalized additive models for location, scale and shape
(GAMLSS). GAMLSS are specified by

gk(θk) = ηθk = β0θk +

Jk∑
j=1

fjθk(xkj) , k ∈ {1, ...,K} ,

where xk1, ..., xkJk are the Jk covariates for modelling the predictor ηθk ,
which is linked to the corresponding distributional parameter θk via the

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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known monotonic function gk(·). β0θk refers to the intercept of the kth
submodel and fjθk represents the assumed type of effect between covariate
j and predictor ηθk . In the following, only linear effects fjθk(xkj) = xkjβkj
will be considered.
While GAMLSS are typically estimated using penalized maximum like-
lihood, component-wise gradient boosting (Bühlmann and Yu, 2003) has
the advantages of an intrinsic variable selection and a regularization of
model coefficients. Due to the model structure, boosting GAMLSS is how-
ever not completely straight forward. Modifying the originally “cyclical”
update structure for boosting GAMLSS (Mayr et al., 2012), Thomas et al.
(2018) propose to update only the predictor ηθk whose update yields the
largest improvement with respect to the loss function. Zhang et al. (2022)
extend the algorithm by adaptive step lengths that ensure a natural balance
in the updates of the different submodels and often need fewer iterations

until stopping. They define the adaptive step length ν
[m]
θk

as shrunk optimal
step length, i.e.

ν
[m]
θk

= 0.1 · ν∗[m]
θk

, where ν
∗[m]
θk

= arg min
νθk

ρ
(
η
[m−1]
θk

+ νθk h
[m]
j∗,θk

)
. (1)

η
[m−1]
θk

represents the predictor corresponding to θk after m− 1 iterations

and h
[m]
j∗,θk is the best-performing base-learner for updating η

[m−1]
θk

. For solv-
ing this optimization problem, Zhang et al. (2022) implement a numerical
optimization via line search and derived analytical results for the special
case of a Gaussian response variable with simple linear base-learners.
In order to generalize this concept to other distributions, an optimal step
length would either have to be derived for every submodel of every response
variable separately, where in many cases an analytical closed form solution
does not exist, or a line search could be used, which is however computa-
tionally more demanding. We therefore propose a third option to construct
adaptive step lengths based on algorithm intrinsic information.

2 Alternative Construction of Adaptive Step Lengths
Based on the Ratio of Base-Learner Norms

The new construction of an adaptive step length aims at GAMLSS that
have a response variable with more than one distributional parameter. In
particular, we propose to define the adaptive step length for updating

η
[m−1]
θl

, l ∈ {1, ...,K} \ {k} in iteration m as the step length of a refer-
ence parameter θk rescaled by the ratio of norms of the respective fitted
base-learners, i.e.

ν
[m]
θl

:= ν
[m]
θk

∥h[m]
j∗k ,θk
∥22

∥h[m]
j∗l ,θl
∥22
, (2)
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where ∥x∥2 denotes the Euclidean norm of x ∈ Rn.
This construction and especially the choice of the squared Euclidean norm
as measure for the length of a vector is motivated by the observation that
the ratios of optimal step lengths behave approximately inversely to the
ratios of the Euclidean base-learner norms, i.e.

ν
[m]
θl

ν
[m]
θk

≈
∥h[m]

j∗k ,θk
∥22

∥h[m]
j∗l ,θl
∥22
.

Fig. 1 below displays both ratios for an exemplary simulation run of a
negative binomial response variable with shrunk optimal step lengths.
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FIGURE 1. Inverse ratio of shrunk optimal step lengths and ratio of Euclidean
base-learner norms over the iterations of an exemplary simulation run with a
negative binomial response variable.

Defining the step size of a potential update by ζ
[m]
θk

:= ν
[m]
θk
∥h[m]

j∗k ,θk
∥22, the

approximately inverse relationship of base-learner norms and step lengths
can be rewritten as

ν
[m]
θk
∥h[m]

j∗k ,θk
∥22 = ζ

[m]
θk
≈ ζ [m]

θl
= ν

[m]
θl
∥h[m]

j∗l ,θl
∥22 ,

where ν
[m]
θk

and ν
[m]
θl

are specified as in eq. 1. The step length definition in
eq. 2 thus effectively fixes the step sizes of all updates to the step size of
the reference parameter.
Base-learner ratio-based adaptive step lengths cannot stand on their own
but a differently obtained reference step length is always necessary. In or-
der to implement adaptive step lengths for negative binomial and Weibull
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distributed response variables, we derive approximations of the optimal
step lengths of one parameter per distribution analytically, in the negative
binomial case, e.g., µ serves as reference parameter.

3 Simulation Study

In order to show that using the base-learner ratio-based approximation
yields comparable results as shrunk optimal step lengths, we consider the
following model with a negative binomial response variable yi ∼ NB(µi, αi)
exemplarily:

ηµ,i = log(µi) = 0.2− 0.25x1i + 0.2x2i − 0.15x4i + 0.2x5i

ηα,i = log(αi) = −1.5− 0.25x2i + 0.2x3i − 0.1x5i + 0.15x6i

Note that in this model formulation x2i and x5i are shared between both
predictors and that yi has a variance of µi + αiµ

2
i . We simulate n = 500

observations of each variable, where x1i, x2i, x3i are drawn independently
from a uniform distribution on [−1, 1] and for x4i, x5i, x6i independent real-
izations of a Bernoulli distributed random variable with p = 0.6 are drawn.
Except for the inclusion of binary covariates and different coefficients in
order to have a setup with differing optimal step lengths, this simulation
setup follows Thomas et al. (2018).
We apply a non-cyclical boosting algorithm with two adaptive step length
approaches with analytically derived νµ, where the step length for an up-
date of α is either obtained by line search (‘LS’) or based on the base-learner

ηµ ηα

(Intercept) x1 x2 x3 x4 x5 x6 (Intercept) x1 x2 x3 x4 x5 x6
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FIGURE 2. Coefficient estimates of the non-cyclical boosting algorithm with
different step length approaches at the stopping iteration.
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ratio (‘BL’). Additionally, a fixed step length of 1 for both submodel up-
dates is considered (‘F’). The maximum number of iterations is set to 1,000
for the adaptive step length approaches and to 7,000 when using fixed step
lengths. Fig. 2 displays the coefficient estimates at the stopping iteration
obtained via 10-fold cross-validation for B = 100 simulation runs.
The simulation results show that the adaptive step length approaches yield
similar estimated coefficients, while using fixed step lengths results in higher
coefficient estimates in ηµ and lower coefficient estimates in ηα in absolute
values. The differences in the resulting coefficients go along with a larger
number of false positives in ηµ and false negatives in ηα when using fixed
step lengths, where in 46 of the runs ηα is not updated at all. While overall
being very similar to the numerically obtained shrunk optimal step lengths,
the base-learner ratio-based results seem to exhibit a slight tendency to-
wards the fixed step length approach.
The outlined differences between the adaptive and fixed step length ap-
proaches originate from the problem that the negative gradient vector sizes
of the different parameters differ substantially in this model setup, which
carries over to the size of the fitted base-learners. While in adaptive step
length approaches this is compensated by the step lengths, with fixed step
lengths the relation of the base-learner sizes is passed onto the predictor
updates favoring updates of the predictor with the larger base-learners.
The mean squared prediction errors on test data as well as the amount
of false positives and false negatives indicate that this disbalance between
submodel updates leads to an overfitting of µ and underfitting of α in the
present case.
The simulation results moreover show that the intended reduction in run
time could be achieved. The median run time of the base-learner ratio-
based approach is about 45% lower than computing optimal step lengths
numerically in this setup, while for the fixed step length approach the
median run time until stopping is about 80% higher due to later stopping.
Simulations with 10 and 150 additional non-informative variables show
similar overall results.

4 Modelling the Number of Doctor’s Visits

In the following, we apply the non-cyclical boosting algorithm with two
adaptive (‘LS’ and ‘BL’) and a fixed (‘F’) step length scheme to a neg-
ative binomial location and scale model for the number of doctor’s visits
in Australia. The data was collected within the Australian Health Survey
in 1977-1987. In addition to the number of doctor’s visits, it comprises
information on different characteristics of the individuals like the type of
health insurance (e.g., ‘levyplus’ or ‘freepoor’) and variables referring to
the health condition (e.g.,‘chcond1’) or recent treatments (e.g., ‘medicine’,
‘prescrib’) of 5,190 individuals. For further information on the variables,
we refer to Cameron and Trivedi (1986) who compiled the data.
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TABLE 1. Comparison of the coefficient estimates using different step length
schemes.

LS BL F LS BL F

ηµ (Intercept) -2.012 -2.054 -2.094 freepoor -0.184 -0.264 -0.363
ηα 0.476 0.339 0.264 0 0 0
ηµ sex 0.111 0.128 0.147 chcond1 0 0 0.009
ηα 0 0 0 0 0 0
ηµ income 0 -0.003 -0.010 medicine 0 0 -0.011
ηα 0 0 0 -0.056 -0.087 -0.113
ηµ levyplus 0 0 0 prescrib 0.153 0.165 0.177
ηα -0.080 -0.053 -0.030 -0.241 -0.139 -0.078

Table 1 displays selected coefficient estimates at the stopping iteration de-
termined by 10-fold cross validation. The results show that with respect to
ηµ the two adaptive step length approaches select the same variables except
for the variable ‘income’, which has an estimated coefficient of -0.003 in the
base-learner ratio-based approach. Also, size and sign of the coefficient esti-
mates are similar. The fixed step length approach on the other hand selects
‘income’, ‘chcond1’ and ‘medicine’ additionally and results in higher coef-
ficient estimates for all selected covariates. For ηα, the same variables are
selected in all three cases with mostly similar coefficient estimates.
The mean squared error on a held-out part of the data set is 0.907, 0.941
and 1.029 for numerically obtained, base-learner ratio based and fixed step
lengths respectively. The results in this data example are thus in line with
the findings in the simulation study.

References
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1 Introduction

Streaming datasets, i.e. datasets becoming available sequentially over time,
are the rule rather than the exception in the big data era. Examples include
observations from long-term clinical trials and online A/B tests. In this
context, delivering safe inferences which are valid at any and all times of
analysis appears especially crucial. While the coverage of usual confidence
intervals (CIs) is guaranteed for a fixed sample size n, mixture confidence
sequences (CSs) (Robbins, 1970) meet the coverage requirements under
arbitrary enlargement of the sample (see, e.g., Howard et al., 2021; Ramdas
et al., 2022, § 2.7). We extend here the use of the approximate CSs proposed
in Pace et al. (2022) for scalar parameters of interest to the framework of
generalized linear models (GLMs). This extension is based on the sequential
update and the asymptotic normality of the renewable estimator by Luo
and Song (2020) for GLMs regression coefficients.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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2 Renewable estimation in generalized linear models

Luo and Song (2020) assume that data arrive in batches, and each batch
Db = {yb, Xb} (b = 1, . . . , B) with nb independent observations (yi, xi) can
be modeled by the same exponential dispersion family model f(yi;xi, β, ϕ).
Covariates are in the single-batch nb × p matrix Xb and the single-unit
p-vector xi, β = (β1, . . . , βp)

T is the coefficients vector of interest and
ϕ > 0 is the dispersion parameter. The goal is to fit sequentially a GLM on
the first b aggregated batches, i.e. estimate µi = E(yi|xi) = g(xT

i β) with

i = 1, . . . , Nb =
∑b
j=1 nj for some known link function g(·).

Since there is no closed form for the maximum likelihood (ML) esti-

mator β̂∗
b , it is not possible to update it sequentially based solely on

the current data Db and the previous ML estimate β̂∗
b−1. Denote by

Ub(Db;β) =
∑
i∈Db

∇β log f(yi;xi, β, ϕ) and by Jb(Db;β) = −∇βUb(Db;β)
the bth batch score function and observed information, respectively. Let
also the aggregated observed information be J̃b =

∑b
j=1 Jj(Dj ; β̃j). An

incremental updating algorithm for β̃b (Luo and Song, 2020, eq. (11)) is

β̃
(r+1)
b = β̃

(r)
b + {J̃b−1 + Jb(Db; β̃b−1)}−1Ũ

(r)
b , (1)

where the adjusted score Ũ
(r)
b = J̃b−1(β̃b−1−β̃(r)

b )+Ub(Db; β̃
(r)
b ) is updated

at each iteration. Implementing (1) requires just the availability of current
data and summary statistics {β̃b−1, J̃b−1} of previous data. The renewable
estimator β̃b is consistent and asymptotically normal as Nb → ∞, with
estimated covariance matrix Ṽ = ϕ̃bJ̃

−1
b . The estimator ϕ̃b can be easily

updated iteratively based on the previous ϕ̃b−1 (Luo and Song, 2020, p. 77).

3 Mixture confidence sequences

If inference is conducted as data batches are collected, it is important to
limit the chance that contradictory conclusions are reached along the way.
This translates into requiring that plausible regions for the parameters
constructed at different sample sizes are compatible, i.e. overlap with high
enough probability (Pace and Salvan, 2020).
Let the potentially observable data y(n) be realization of the random vector
Y (n) = (Y1, . . . , Yn) (n = 1, 2, . . . ). We denote by pn(y(n); θ) the density of
Y (n) with support independent of θ ∈ Θ ⊆ Rq. A sequence of estimation
regions Θ̂n = Θ̂(y(n)) ⊆ Θ is a CS. The latter has persistence level 1− ε if

∀θ ∈ Θ Pθ

(
θ ∈ ∩n≥1Θ̂n

)
≥ 1− ε , 0 < ε < 1.

This implies that the probability of observing incompatible conclusions
when the sample enlarges is smaller than ε (Pace et al., 2022). Ville’s
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inequality (Ramdas et al., 2022, § 2.4) is the starting point to obtain con-
fidence sequences of persistence level 1 − ε. Among those, mixture CSs
(Robbins, 1970) have the form

Θ̂1−ε(y
(n)) =

{
θ ∈ Θ : pn(y(n); θ) > ε

∫
Θ

pn(y(n); θ)π(θ) dθ

}
,

where the weight function π(θ) is a preset probability density over Θ. Pace
et al. (2022) consider the partition θ = (ψ, λ), with ψ ∈ Ψ ⊆ Rp0 component
of interest and λ nuisance. Mixture CSs for ψ, based on the corresponding
profile likelihood with λ̂ψ ML estimate of λ for ψ fixed, are

Ψ̂1−ε(y
(n)) =

{
ψ ∈ R : pn(y(n);ψ, λ̂ψ) > ε

∫
Θ

pn(y(n); θ)π(θ) dθ

}
.

4 Monte Carlo experiments

We focus on binary observations with probability of success µi generated
by logit and probit link functions. The p covariates include the intercept
and both discrete and continuous variables, simulated by the R package
RenewGLM (Luo and Song, 2019) as exchangeable with correlation ρ = 0.5.
Consider 104 Monte Carlo sequences of samples with size n ranging from
nmin = 150 to nmax = 105 + nmin. Between these two sample sizes, data
are observed in B batches of equal size nb. Each time the bth batch comes
in, we compute the renewable estimator in (1) for the assumed GLM and
obtain the approximate confidence sequence of persistence level 1 − ε for
βp. Thanks to the asymptotic normality of β̃b,p, according to Pace et al.
(2022, eq. (17)), with a N(β0,p, τ

2
0 ) weight function we get

β̃b,p ±

√
Ṽpp log

τ20 + Ṽpp

Ṽpp
+

(β̃b,p − β0,p)2

τ20 + Ṽpp
− 2 log ε ,

where β̃b,p and Ṽpp are the pth element of β̃b and the (p, p)th entry of Ṽ ,
respectively, obtained as in Section 2 by adapting the code in RenewGLM to
deal also with non-canonical links. The true value of βp is set equal to 1.2
for logit (1.2/1.6 for probit), while β0,p = 0 and τ0 = 1. For various p and
nb, Table 1 compares for logit regression (1−α)-Wald CIs (α = 0.05, 0.01)
and (1 − ε)-mixture CSs (ε = 0.20, 0.05) in terms of incompatibilities and
uncoverages. The former are given by sequences with incompatible inter-
vals, the latter by those not always covering the true parameter value.
Mixture CSs ensure non-contradictory and reliable conclusions on βp: ex-
cept for one case, all incompatibilities and uncoverages are well below the
nominal threshold ε. Those for Wald CIs, instead, always exceed α as they
are generally shorter: for instance, if p = 10 and nb = 20 the average length
is 15.52 for 0.80-mixture CSs and 11.69 for 0.99-Wald CIs. Unshown probit
results are in line. The optimization of mixture CSs for a specific sample
size n∗, in the style of Howard et al. (2021, § 3.5), is left for future work.
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TABLE 1. Empirical % of incompatibilities and uncoverages for the true βp = 1.2
in the logit GLM for data in batches of size nb with p covariates. The weight
function used for mixture CSs is N(0, 1). Results are based on 104 Monte Carlo
sequences from nmin = 150 to nmax = 105 + nmin.

Wald CIs Mixture CSs
p property (%) nb α = 5% α = 1% ε = 20% ε = 5%
5 incompatibilities 20 29.10 6.04 1.96 0.36

100 22.90 4.50 1.06 0.18
uncoverages 20 56.72 19.14 4.78 1.28

100 50.94 15.86 3.72 1.02
10 incompatibilities 20 30.66 5.84 1.90 0.38

100 23.46 3.86 0.82 0.22
uncoverages 20 56.56 19.96 4.94 1.42

100 51.42 15.82 3.14 0.70
20 incompatibilities 20 35.46 8.00 2.58 0.80

100 38.52 18.18 11.48 8.36
uncoverages 20 60.72 22.16 7.12 2.46

100 62.08 29.92 14.98 9.98
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Abstract: The phenomenon of one–inflation is gaining more and more attention
in the recent literature on species abundance and capture–recapture analysis.
When analysing frequency count distribution, the excess of singletons is often as-
cribed to the erroneous inclusion of spurious cases. Various works propose to esti-
mate the true number of singletons relying on the higher, supposedly error–free,
counts (“discounting” approach). We argument that, in the case of microbial di-
versity studies, the generating process of the spurious singletons can be described
in terms of false negative record linkage errors. Errors in sequencing the RNA
genomes result in chimeric sequences that cannot be associated to the correct
species, and constitute missing links that are added to the true singletons. In
this scenario, none of the observed frequency counts is assumed to be error–free,
and we propose an ABC algorithm to estimate the true frequency counts. The
number of true singletons estimated in this way may differ considerably from the
discounting approach. This implies different estimates of the diversity as mea-
sured, e.g., by Shannon’s index. However, curiously, the total population count
estimates under the two approaches coincide.

Keywords: Species problem; Biodiversity; Linkage Errors; Approximate
Bayesian Computing.

1 Introduction

The problem of estimating the number of species in a population given a
sample arises in many applications in the natural sciences, in linguistics and
computer science. Our focus is on applications in microbial ecology. The
spread of next generation high-throughput sequencing technology allowed
to analyse an unprecedented amount of data on microbial communities. In
order to study the biodiversity in a microbial community, an environmental
sample is processed to detect, amplify and sequence RNA genomes. The
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tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
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sequences are clustered into distinct species (or Operational Taxonomic
Units) on the basis of a similarity score. The diversity analysis is then
conducted on the abundance frequency counts, i.e., the counts {nj}j=1,2,...

representing the number of species with j captured occurrences. In most
microbial studies, the distribution {nj}j=1,2,... is characterized by an un-
expected number of low–abundance species, in particular singletons, ac-
companied by a low number of very common species. The nature of these
singletons has been debated at length, and the presence of spurious single-
tons resulting from sequencing errors has been confirmed in various ways
(e.g., Quince et al. 2011, Haas et al. 2011). While bioinformatics focuses
on avoiding the formation of the so–called chimera sequences, or removing
them in a pre–processing step, various statistical contributions attempt to
estimate ex–post their number.
The study of one–inflation in frequency count distribution is gaining more
and more attention also in the recent capture–recapture literature on hu-
man and animal population, which shares many methodological aspects
with the species abundance problem, (see, e.g., Godwin and Böhning 2017,
Böhning et al. 2019, Tuoto et al. 2022). The possible sources of one–inflation
can be categorized as:

� a behavioural effect, where certain units, once captured, avoid subse-
quent captures;

� the presence of out-of-scope units, which enter the sample for a pe-
culiar error mechanism and should be excluded;

� the presence of missing links in the record linkage procedure employed
to create the frequency counts.

Various authors adopted a “discounting” approach to the problem of one–
inflation. That is, they propose to ignore the data affected by errors, i.e.,
the observed singletons, and re-estimate their number on the basis of the
counts nj , j ≥ 2, (see, e.g, Willis and Bunge 2015, Willis 2016, Chiu and
Chao 2016). We argument that this approach is consistent for the second
mechanism listed above: a model where out-of-scope singletons are added
to the baseline distribution of the true counts. We believe that the nature
of the spurious cases can alternatively be described by linkage errors. That
is, we assume that random errors occurring in sequencing result in the
impossibility of a correct classification of the specimen, which cannot be
associated to the right existing species. Therefore, we can describe these
cases as false negative linkage errors (or missing links), which are added
to the true singletons. This approach implies a re–estimation of the “real”
frequency counts for all the abundances, not just the singletons. We found
that treating the excess of singletons in this way leads to significant differ-
ences in the diversity estimates with respect to the discounting approach.
In this work we adopt a secondary approach to the linkage problem, i.e.,
we try to estimate the linkage errors solely on the basis of the vector
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{nj}j=1,2,... and our distributional assumptions, as we do not have access
to the actual linkage process. Modeling linkage errors in this secondary
setting, appears quite complex from a computational point of view. We fix
some simplifying assumptions on the type of error in order to tackle the
issue, but we still resorted to a Bayesian likelihood–free approach as the
most convenient approach.

2 One–inflation models

Say we get n species in our sample with abundances y1, ..., yn, and abun-
dance frequency counts {nj}j≥1. Under an out–of–scope singletons model,
the distribution of the abundances (whether the species are observed or not,
spurious or not) results in the following mixture of a baseline distribution

f̃ of the non–spurious counts, and a Dirac measure over one:

P (Yi = j ; f̃ , ψ) =

{
(1− ψ)f̃1 + ψ if j = 1;

(1− ψ)f̃j otherwise,
(1)

where ψ denotes the portion of spurious cases over the total population
count. Let ñj denote the number of species with j non spurious captures.
Then, since we assumed ñj = nj for j ≥ 2, we just have to estimate the
number of unsampled species ñ0, and the number of non–spurious single-
tons ñ1 as a portion of n1. The estimate of the total number of distinct
species Ñ will result as:∑

j≥0

ñj = ñ0 + n− n1 + ñ1.

A Bayesian estimation of this model presents no difficulties under various
parametric families choices for f̃ . A simple Gibbs sampler scheme is the
following: under a Beta prior for ψ, its posterior is easily updated. Then,
a value for ñ1 is generated from a Binomial with parameters 1 − ψ and
n1. Steps to update the values of ñ0 and of the parameters of f̃ are easily
found in literature (see, e.g., Tuoto et al. 2022).
Under our missing links proposal, we assume that each sequence has the
same probability µ of being missclassified as a singleton independently from
the other. Denote the true number of sampled distinct species as n∗, (n∗ <
n). For each species i with X∗

i true captures, we have Mi missing links,
such that the registered abundance is reduced from X∗

i to Xi = X∗
i −Mi.

Mi has the following distribution:

P (Mi = mi |X∗
i = x∗i ) =

(
x∗i
mi

)
µmi(1− µ)x

∗
i −mi , i = 1, ..., n∗. (2)

Let f∗ be the baseline distribution of the X∗
i . The distribution of the Xi

results as a thinning process where a portion µ of captures disappear. Let
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n∗j denote the true number of species with j captures, and as N∗ =
∑
j≥0 n

∗
j

the total number of distinct species according to the missing links model.
Unlike the spurious singletons model, in this case all values {n∗j}j≥0 have to
be estimated, as they will be, in general, different from the observed values.
Denote as θ the parameters defining f∗. We adopted an ABC rejection
algorithm with the following scheme:

1. generate values for (θ,N∗) from the priors π(θ) and π(N∗);

2. generate values (n∗0, n
∗
1, n

∗
2, ...) conditional on N∗ and θ;

3. generate a value for µ from the Beta prior π(µ) (independent from
all the rest);

4. generate missing links at random according to the distribution de-
scribed in (2), given (n∗0, n

∗
1, n

∗
2, ...) and µ. Each missing link modifies

the observed count, and increments accordingly the number of sin-
gletons, thus obtaining the fictitious data D∗;

5. retain the current generated values if a measure of distance ρ between
the generated data D∗ and the observed data D is below a certain
threshold ϵ:

ρ(D∗, D) < ϵ.

In our application we utilized the euclidean distance.

As the simple ABC rejection scheme can have a low acceptance rate, we
further adopted a sequential ABC to accelerate the procedure, as described
in Marin et al. 2012.
A simulation study confirmed the correctness of the ABC algorithm under a
Poisson, Geometric, and finite mixture of Poisson distributions for f∗. Our
first finding in a further simulation study comparing the spurious cases
and the missing links proposal, has been the substantial identity of the
estimates of the total number of species under the two competing models.
That is, if we choose f∗ and f̃ in the same family, despite the fact that the
estimates of the true abundance frequencies differ under the two models
(i.e., ñj ̸= n∗j for all j), we have N∗ = Ñ .
To demonstrate this identity, consider the baseline distribution f∗ of the
values X∗

i introduced above. It is easily demonstrated that, under various
parametric family for f∗, (notably, if f∗ is any mixed Poisson), the dis-
tribution of the Xi belongs to the same parametric family. Then, under
identifiability of that family, if we use model (1) and take f̃ in the same

family as f∗, f̃ will be identified as the distribution of the xi, for all xi > 0,
and ψ would represent the portion of missing links over the total population
count. Let r0 be the number of captured species whose occurrences where
all missclassified, i.e., such that Mi = X∗

i . Let M be the total number of

missing links: M =
∑n∗

i=1Mi. Then we have

n∗ = n−M + r0 and ñ1 = n1 −M.



428 One–inflation in microbial studies

The missing links mechanism does not affect the number of undetected
species n∗0, but under f̃ the r0 values are included in ñ0, i.e., we have
ñ0 = n∗0 + r0. Finally, we can write

Ñ = ñ0 + ñ1 + n− n1 = ñ0 + n−M = n∗0 + r0 + n−M = n∗0 + n∗ = N∗.

As we have said, even if the estimates of the total number of species co-
incides under the two models, the abundance distribution will differ, and
consequently, the estimated diversity will differ. To illustrate the effect of
(ignoring) a missing links mechanism on the estimation of diversity, we uti-
lized a simulation study. As a measure of diversity we considered Shannon’s
diversity H (see, e.g., Chiu and Chao 2016) calculated as:

H = exp

−∑
j≥1

nj
j

s
ln
j

s

 . (3)

We generated various datasets under Poisson and Geometric baseline dis-
tributions, then simulated the effect of missing links to simulate from our
model. Then, we estimated Shannon’s diversity on the observed data (that
is, ignoring any one–inflation mechanism), on the “adjusted” counts as de-
rived from the spurious cases model (that is, trimming the observed number
of singletons) and as derived from the ABC procedure for the missing links
model. Note that in our Bayesian approach we can easily estimate the
posterior distribution of (3). First, we concluded that ignoring an existing
one–inflating mechanism, implies a severe overestimation of the diversity.
Second, utilizing model (1) when missing links are the true source of er-
ror, reduces sensibly the overestimation, but still leads to different results
than what can be achieved with an ABC simulating the actual generating
process.
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Abstract: In order to statistically predict a future record performance in sports
based on previous record values, we exemplarily consider a data set from men’s
javelin throw. The assumption of a Pareto distribution as being the underlying
distribution of record values is discussed. Within this model, point and inter-
val prediction of future world records are derived and further refinements are
outlined.
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1 Introducing the data

Data from athletics events have been analyzed by using techniques from
extreme value theory, mainly. For example, Einmahl and Magnus (2008)
estimated the endpoint of the underlying distribution, which can be inter-
preted as an ultimate record. In their work ’How far can man go?’ Fraga
Alves et al. (2013) follow a similar approach when studying men’s long
jump using extreme-value theory. Stephenson and Tawn (2016) focus on
data from running events in athletics to evaluate performances of athletes.
In Empacher et al. (2023) we studied lower records in the sense of statisti-
cal record values with a focus on an underlying power function distribution
applied to running events, and we predicted the very next world record in
the sense of point and interval prediction.
In the present analysis, data from men’s javelin throw are studied. From
https://worldathletics.org/records/all-time-toplists/

throws/javelin-throw/outdoor/men/senior?regionType=world&

page=1&bestResultsOnly=true&firstDay=1900-01-01&lastDay=2022-

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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12-31, (accessed on 3 February 2023) the all time top list of an event up to
2022 is obtained, which consists of only the best result per athlete. Since
every athlete appears in the data at most once, we assume the throwing
distances to be realizations of stochastically independent random variables.
A histogram of the data with sample size 1625 is shown in Figure 1.
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FIGURE 1. Results of men’s javelin throws.

In order to further assume observations from identical distributions, we
exclude data below a chosen threshold. The remaining throwing distances
can be assumed to be achieved by athletes, who compete on the same
professional level. In the men’s javelin we choose the threshold λ = 80.
Since the histogram of the respective data with sample size 420 takes the
shape of a Pareto distributed sample with cumulative distribution function
(cdf) and probability density function (pdf)

Fλ,β(x) = 1−
(
λ

x

)β
, fλ,β(x) =

βλβ

xβ+1
, x ∈ (λ,∞),

respectively, the pdf of a Pareto distribution is fitted using the maximum
likelihood estimate of the shape parameter β and the chosen λ, which will
be considered a known parameter in the following study. The histogram of
the throwing distances above threshold along with the graph of the fitted
Pareto pdf can be found in Figure 2.
In order to evaluate the Pareto assumption, we further consider the
quantile-quantile plot in Figure 3.
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FIGURE 2. Results of men’s javelin throws exceeding 80 m and pdf of the fitted
Pareto distribution.

Although the density plot shows a good fit to the data, the Q-Q plot gives
rise to question the underlying distributional assumption with respect to
its tail behavior. In the present analysis, we keep the Pareto assumption,
in which case explicit point and interval predictions of future record values
can be derived.

2 Record values

Let (Xi)i∈N be a sequence of iid random variables with absolutely contin-
uous cdf F and pdf f . The random variables

T (1) = 1, T (n+ 1) = min{j > T (n) : Xj > XT (n)}, n ∈ N

are called upper record times and the quantities

Rn = XT (n), n ∈ N

are called upper record values (cf. Arnold et al. (1998) and Nevzorov
(2001)).
The sequence of record values in men’s javelin can be found at
https://worldathletics.org/records/by-progression/17622?type=1

(accessed on 3 February 2023). In order to predict the very next (future)
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FIGURE 3. Pareto Q-Q plot for the results of men’s javelin throws exceeding
80 m.

record based on r previous record values, we use the so called maximum
product of spacings predictor (MPSP). According to Volovskiy and Kamps
(2020) the MPSP of the (r + 1)th record in the case of upper records
values from a Pareto distribution is given by

π
(r+1)
MPSP = λ

(
Rr
λ

) r+1
r

.

Furthermore, for α ∈ (0, 1), exact and approximate (1 − α)-prediction in-
tervals are shown in Empacher et al. (2023):

PI1 =

R1 exp

(
ln(Rr)− ln(R1)

(1− α
2 )

1
r−1

)
, R1 exp

 ln(Rr)− ln(R1)(
α
2

) 1
r−1

 ,
P I2 =

[
λ exp

(
ln(Rr)− ln(λ)

(1− α
2 )

1
r

)
, λ exp

(
ln(Rr)− ln(λ)

(α2 )
1
r

)]
,

P I3 =

[
Rr

(
1− α

2

)− ln(Rr)−ln(λ)
r

, Rr

(α
2

)− ln(Rr)−ln(λ)
r

]
.

While PI1 and PI2 are exact prediction intervals obtained by means of
Pivot-statistics, the interval PI3 is an approximate one, which is con-
structed by plugging in the maximum likelihood estimator of β based on
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record values. In the last column of Table 1, the interval PI2 is presented
because it has shortest expected length of the two exact prediction inter-
vals.
In the first column of Table 1 the number of the record value to be predicted
is listed. In the second column the corresponding record is given. The first
entry 85.74 in this column is the first javelin throw performance exceeding
the chosen threshold 80 m and therefore is considered to be the first record
value in the data set. The predictions in the third and forth column of
each row are based on the record values in the second column and previous
rows. Especially, in the first row a prediction without previously observed
records is not possible. The record value in the last row is still waiting to
be performed.

TABLE 1. Table of number of predicted record r + 1, corresponding records,
MPSP based on records 1, . . . , r and prediction intervals with α = 0.1.

r + 1 record MPSP PI2

1 85.74 - -
2 87.66 91.89 [86.05; 319.86]
3 89.10 91.76 [87.87; 120.42]
4 89.58 92.36 [89.27; 107.17]
5 91.46 92.15 [89.71; 101.62]
6 95.54 93.94 [91.59; 102.08]
7 95.66 98.41 [95.69; 107.18]
8 98.48 98.13 [95.79; 105.24]
9 - 101.07 [98.61; 108.23]

For a small number of observed record values the upper bound of the pre-
diction interval in Table 1 takes large values and thus respective prediction
intervals are not meaningful. The length of the prediction interval decreases
for larger r and then 90%-prediction intervals perform well. The seventh
record value is the only one that does not lie in the corresponding predic-
tion interval. The larger MPSP in that case also indicates that a greater
improvement of the world record was expected according to the model. The
point prediction of the eighth record is quite close to the observed record
value. The MPSP in the last row indicates that the 100 m barrier may be
broken by the next future world record performance.

3 Conclusion

In the prediction of future sports records based on previous record values
several model assumptions are made. The underlying random variables are
supposed to be independent and identically distributed and an underlying
distribution has to be chosen, which, in our case, is the Pareto distribution.
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Although the assumptions have to be discussed critically, the prediction
results in the model of common upper record values show a promising
performance with an increasing number of observed records. The analysis
of models closer to reality, such as by incorporating a trend in the data
over time, will be subject matter of our future work.
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Dae-Jin Lee1,2, Maŕıa J. Legarreta-Olabarrieta3, Susana
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Abstract: In this study, we propose a framework for analysing in-hospital pa-
tient data from electronic health records. We transform longitudinal sparse vital
signs measurements into cross-sectional data via descriptive statistics, imputing
missing values, and evaluating variables strongly associated with time to mutu-
ally exclusive events (favourable medical discharge or deterioration). We employ
competing risk and random survival forest techniques to predict patients’ length
of stay and evaluate models’ performance via Brier score.
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1 Introduction

The evaluation of the health status of hospitalised patients is often con-
ducted based on electronic health records (EHR), tending to result in sparse
datasets with problems such as high rates of missing values. In this work,
we aim to study each patient’s length of in-hospital stay (LoS) as a func-
tion of their cross-sectional vital signs statistics, alongside sex and age.
Here, our target is to model the time-to-event until one of the two possible
(mutually exclusive) final situations occur: either favourable discharge or
clinical deterioration. For this, we employ competing risk models such as:
cause-specific Cox proportional hazard regression, Fine and Gray’s subdis-
tribution hazard model, and cause-specific random survival forests.

This paper was published as a part of the proceedings of the 37th Interna-
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2 Materials and methods

2.1 Data description and pre-processing

In the Galdakao-Usansolo University Hospital (Basque Country, Spain),
a total of 19,602 hospitalisations (lengths of stay at least 24 hours) were
collected during the year 2019, of which 852 (4.35%) resulted in deterio-
ration. These data correspond to 55.8% males and 44.2% females. Those
data are split into train and testing data (70% and 30%, respectively),
via stratified random sampling, to keep the proportion of events. Training
data has 13,722 hospitalisations with 597 (4.35%) that result in deterio-
ration. Otherwise, the test has 5,880 hospitalisations with 255 (4.33%) in
deterioration.
For each hospitalisation, we have the patient’s sex and age, as well as
longitudinal data along the hospitalisation for 7 vital signs: temperature,
systolic and diastolic blood pressure, heart and respiratory rates, oxygen
saturation and neurological state. We summarise these longitudinal data
with the following statistics: maximum, minimum, first observation, last ob-
servation, mean, standard deviation, average percentage change (apc) and
average change per time unit (acptu), transforming the original variables
into a cross-sectional higher dimensional space. Then, we use the Multiple
Imputation by Chained Equations (MICE) method for imputing missing
cross-sectional values.

2.2 Variable selection

To detect which variables are strongly associated with time-to-event, where
possible events are deterioration and favourable discharge, we employ the
LASSO Regularized Cox Regression (Simon et al., 2009) and Best Subset
Selection (Wen et al., 2017) in CoxPH models. In LASSO, we obtain the
best regularisation parameter λ by k-fold cross-validation (CV). In each
one, LASSO and BeSS (Best Subset Selection), we define two models: (a)
One using deterioration as an event and favourable discharge as censored
data, where we obtained a set s1 of variables; (b) one with deterioration as
censored and favourable discharge as the event, where we obtain a set s2
of variables. Finally, we define the definite set of variables as s = s1 ∪ s2,
which is a subset of the full set of variables.

2.3 Time-to-event models

Given that hospitalisations can result in two mutually exclusive final states:
favourable discharge or clinical deterioration, we opted for competing risk
models. The first type of model that we use is the Cause-Specific Cox
(Austin et al., 2016) (CSC), where the hazard function denotes the instan-
taneous rate of occurrence of the k-th event in subjects who are currently
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event-free. For each possible event D ∈ {1, · · · ,K}, it is calculated as de-
scribed below.

λcsk (t) = lim
∆t→0

P (t ≤ T < t+ ∆t,D = k|T ≥ t)
∆t

, (1)

where T is the random variable “baseline time until the occurrence of the
event of interest” (such as death, failure, etc.), t ∈ [0,∞) and, in our case,
K = 2. The second type of model, known as Fine and Gray (Austin et al.,
2016) (FG) or sub-distribution hazard function, defines the instantaneous
risk of failure from the k-th event in subjects who have not yet experienced
an event of type k (hazard function), as in Equation 2.

λsdk (t) = lim
∆t→0

P (t ≤ T < t+ ∆t,D = k|T > t ∪ (T < t ∩D ̸= k))

∆t
. (2)

The third model is an adaptation of random survival forest (RSF) pro-
posed by Ishwaran et al., 2008. Analogous to the cause-specific Cox –which
estimates cause-specific hazards using linear models, with all other events
taken as censored–, here we employ a cause-specific RSF (CS-RSF), where
each RSF is trained for a particular hazard function. The RSF hyperpa-
rameters are chosen by tuning in subsamples employing the out-of-sample
error.
To evaluate the accuracy of a predicted survival function at a given time t,
we use Brier score (BS). For a dataset of N individuals, survival times Ti,
co-variables Xi and predicted survival function Ŝ(t), Brier score is defined
as BS(t, S) = E(1Ti≥t − Ŝ(t|Xi))

2, calculated for each possible final state.

3 Results and conclusions

Employing LASSO and BeSS, Table 1 summarizes the variables that are
discarded to model the time to patient deterioration or discharge. We can
see that the statistic more discarded was the first observation and the mean.

TABLE 1. Variables discarded by LASSO and BeSS methods.

Vital sign Discarded by LASSO Discarded by BeSS
Temperature apc first
Systolic pressure first, mean first
Diastolic pressure apc —
Heart rate mean apc
Respiratory rate max, first, mean, sd, acptu min, last, mean, acptu
Oxygen saturation mean, acptu —
Neurological state — —

We compare CSC, FG and CS-RSF techniques concerning three models:
the full model, which employs all the variables; a model with the variables
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selected by LASSO Cox regression; finally, a model with the variables se-
lected by BeSS. Then we calculated the Brier score for a LoS of 2, 3, 4 and
5 days (48, 72, 96 and 120 hours).

FIGURE 1. Brier score for the proposed models and variable selection methods.

As depicted in Figure 1, for both types of event, there is no meaningful
gain due to variable selection. Across models, CSC achieves the highest
prediction performance in BS for both time until both deterioration and
favourable discharge. For deterioration, FG has similar BS to CSC, whereas
CS-RSF had the worst performance. For favourable discharge, CS-RSF
behaved better than FG, but both were far from CSC.
As a conclusion, in this work, we established a framework for modelling
competing in-hospital LoS as a function of patients’ vital signs (obtained
from EHR). We obtained cross-sectional statistics of the time series data,
dealt with high rates of missing values, and predicted length of stay by
combining ‘classical’ time-to-event and machine learning models.

References

Austin P.C., Lee D.S., Fine J.P. (2016). Introduction to the Analysis of
Survival Data in the Presence of Competing Risks. Circulation,
133(6), 601 – 609.

Ishwaran H., Kogalur UB., Blackstone EH., Lauer MS. (2008). Random
survival forests. The Annals of Applied Statistics, 841 – 860.

Simon N., Friedman J., Hastie T., Tibshirani R. (2009). Regularization
Paths for Cox’s Proportional Hazards Model via Coordinate Descent.
J Stat Softw, 39(5), 1 – 13.

Wen C., Zhang A., Quan S. and Wang X. (2020). BeSS: An R Package
for Best Subset Selection in Linear, Logistic and Cox Proportional
Hazards Models. J Stat Softw, 94(4).



Mixed nonlinear modelling in food
engineering: determination of the salting
time of boneless dry-cured Cerretan hams

Xavier Espuña1, Lesly Acosta1, Josep A. Sanchez-Espigares1,
Xavier Tort-Martorell1

1 Department of Statistics and Operations Research, Polytechnic University of
Catalonia, Barcelona, Spain

E-mail for correspondence: lesly.acosta@upc.edu

Abstract: A great challenge in producing a good cured ham is to reduce the
variability of the salt content between pieces of ham and to obtain homogeneity in
terms of flavour and quality in general. This reduction in variability would imply
a reduction in salt content, a recommendation of the World Health Organisation
(WHO, 2007). This work focuses on the salting process of boneless Cerretan hams
and our aim is two-fold: 1) to build a mathematical model that enables —through
predictions— the reduction of the variability of salt between pieces, and 2) to
determine an ‘appropriate’ salting time for each ham.
We propose a novel strategy within the ham industry to determine appropriate
hams extraction time from the salting pile and we postulate that it is statistically
and practically advantageous to the habitual hams extraction strategy (removal
based on fat and weight classification and all at the same time).
We build a non-linear mixed (NLM) model that, according to the final salt up-
take target of 1.7%, would allow to decide each ham extraction time depending
on the initial weight and fat, plus the weight decrease on day one. This model has
to be applicable in industrial production, albeit in an approximate form. To ac-
count better for the salting-time estimated uncertainty, we run a nonparametric
bootstrap. A further aim is to extrapolate the use of the NLM modelling method-
ology and proposed novel extraction strategy to other boneless hams industrial
production systems in Europe.
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This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).



Espuña et al. 441

1 Introduction

Various European countries have specialities of cured hams that are salted,
dried and matured off the bone, such as Speck Alto Adige, Schwarzwälder
Schinken, Tyrolean Speck, Culatello di Zibello from Italy as well as the
Cerretan ham in Spain.
A great challenge in producing a good cured ham is to reduce the variability
of the salt content between pieces of ham and to obtain homogeneity in
terms of flavour. This reduction in variability would imply a reduction in
salt content, a recommendation of the World Health Organisation (WHO,
2007), although a too low salt content could also increase pastiness defects
in the texture of the ham that usually occurs at a low threshold of 1.4%;
see, e.g., Toldrá et al (1997), Coll-Brasas et al. (2019), and Mart́ın-Gómez
et al. (2022).
This work focuses on the salting process of boneless Cerretan hams and
our final goal is to propose a NLM model that, according to the average
salt uptake target of 1.7%, would allow us to decide on the appropriate
date of removal of the hams from the salting pile depending on the initial
fat and weight, plus the weight decrease on day one. This model has to
be applicable in industrial production, albeit in an approximate form, to
estimate the salt pile removal time. We also run a nonparametric bootstrap
study, to account better for the estimated salting-time uncertainty.

2 Materials and methods

2.1 Ham samples and Salting process

Twenty-seven lean Cerretan hams were selected from a nearby slaughter-
house with an initial pH between 5.8–6 (Garćıa-Rey et al., 2004). The hams
had a fat percentage, as measured by the Multiscan X-ray technology, of
15% to 24%. Each ham was weighed, and measured for fat. In the salting
phase, first, a specific seasoning mixture is used (Gratacos et al., 2013).
The hams are left to stand for a day to absorb the salt and then covered
with recycled, moist (4%-5%) salt (T-3 sea salt) at a temperature of 2ºC
to 4ºC, and at a humidity of 85% to 95%. Lastly, they are placed on a flat
surface in a container that lets the exudate run off.
The time starts counting when the hams were covered with the recycled
salt and after 24 hours, the salt content is measured and also the weight
to determine its decrease on day one. The hams continue to be measured
in terms of salt uptake over time during seven days, since we study the
salt acquisition curve up to the moment of saturation. Note that hams are
normally salted for 0.5 days per kg of initial weight, which would mean
that they are salted for around 4 days. In this study, however, they were
left in the salting pile for 7 days, since it is of interest to study the salt
acquisition curve up to the moment of saturation.
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2.2 Nonlinear mixed modelling

To study the daily evolution of the salt content of each of the 27 sampled
Cerretan hams pieces, which would allow to model the expected value of
salt content and characterize its variability, the NLM modelling statistical
methodology is used (Pinheiro and Bates, 2000). Specifically, we built a
NLM model of logistic-type to predict the amount of salt that each ham
will have at each point in time. A general expression of the logistic NLM
model that, apart from time (days), depends on three fixed parameters
(β1, β2, β3)’ and three random effects b1i, b2i and b3i on each parameter is
given by:

Yi = f(t, ϕi) + ϵi,

= µi(t) + ϵi ϵi ∼ N(0, σ2I) i = 1, . . . , k

where

µi(t) =
Φ1i

1 + exp(− t−Φ2i

Φ3i
)
.

and

ϕi =

 Φ1i

Φ2i

Φ3i

 =

 β1
β2
β3

+

 b1i
b2i
b3i

 .

The parameter Φ1i represents the salt saturation and the parameter Φ2i

the time it takes to reach half of the saturation value. The parameter Φ3i

tells us how steep is the central part of the logistic S-shaped function, i.e.
the instantaneous speed at which the salt is absorbed.
The vector of random effects (b1i, b2i, b3i)

′ has a normal distribution with
bi ∼ N(0,Σb). The fixed effects vector of the parameters could be expressed
as a linear function of other variables.
The general procedure, using the data of the 27 sampled ham pieces, for
building a valid model to predict the salt average amount that each ham
will have at each time point, and later to estimate when to remove the ham
from the salting pile is:

1. Describe the time evolution of the 7-day salt measurements for each
of the 27 sampled hams; in this case the observed S-shaped behaviour
suggested the fit of a logistic NLM model.

2. Fit the logistic NLM model with salt-uptake as an outcome and only
time as an independent variable. In this case, a strong correlation
between the parameters Φ2i and Φ3i was observed and to avoid over-
parameterization we get a reduced model by expressing Φ2i in terms
of the the parameter Φ3i.
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3. Fit an NLM model considering, apart from time as an independent
variable, the covariates initial fat and weight, plus the weight decrease
on day one. This model should be simplified to obtain a final model
including only significant terms.

4. Validate the model and report the estimation results. In this case,
the fitted model was properly validated (results not shown).

5. With the final model, predict the salt uptake per ham and also de-
termine the extraction time from the salting pile required to reach
the fixed target salt average content of 1.70%. A limitation, how-
ever arises, because it would not be industrially feasible to extract
the hams at every predicted time of day; it would involve excessive
labour costs.

6. Propose as a solution the strategy of considering five possible prede-
fined extraction points in time (days: 1, 1.5, 2, 2.5 and 3) at which
hams (as a percentage per day) could be removed from the salting
pile. With this strategy, we improved the habitual hams extraction
strategy (removal based on weight and fat similarities, and all at the
same time) in terms of bias and uncertainty.

2.3 Nonparametric bootstrap

To better quantify the uncertainty of the salting time of extraction, we run
a nonparametric bootstrap (Davison, A. C. and Hinkley, 1997). The idea
is that the 1000 simulated data would have similar characteristics to our
27 experimental units and based on these trajectories, the time at which
the target 1.7% salt content is reached can be estimated, and also the
empirical distribution of those extraction salting times. This distribution,
being per se continuous, is discretized using the five predefined extraction
points in order to plan the removal of hams from the salting pile based
on a feasible industrial production plan. This discretization will produce a
small increase in the variability of the measured salt in removed hams, but
despite that, the obtained uncertainty will be lower than the one obtained
with the habitual hams extraction strategy.
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Abstract: We propose a Bayesian Model Averaging (BMA) approach for learn-
ing Gaussian Bayesian networks (BNs) from data with missing values. We present
a Markov Chain Monte Carlo sampling algorithm that allows for simultaneously
sampling directed acyclic graphs (DAGs) as well as the values of the unobserved
data points. We compare the network reconstruction accuracy of our new BMA
approach with two non-Bayesian approaches for learning BNs from incomplete
data. For the empirical evaluation we use protein data from the RAF pathway.
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1 Introduction

Bayesian networks (BNs) are an important model class for statistically
modelling the conditional (in-)dependence relations among random vari-
ables X1, . . . , Xn. The variables become the nodes of a directed acyclic
graph (DAG) whose edges encode the conditional (in-)dependence rela-
tions among them. Given a DAG G the n-dimensional joint distribution
factorizes into n univariate conditional distributions:

P (X1, . . . , Xn|G) =
n∏
i=1

P (Xi|πiG) (1)

where πiG is the parent node set of Xi implied by the DAG G. We recall
that Xj is a parent of Xi if there is an edge from Xj to Xi, symbolically
Xj → Xi. Learning BNs from data is challenging, as the number of pos-
sible DAGs grows super-exponentially in n and the acyclicity constraint
does not allow this task to be decomposed and to be solved in parallel.
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tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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If the available data set has missing values, not only the BN but also the
missing data points have to be inferred from the observed data. A classical
but still widely-applied approach for learning BNs from incomplete data is
the structural Expectation Maximisation (EM) algorithm from Friedman
(1997). It searches for the best DAG in terms of a penalized likelihood
inside an EM algorithm. Conceptually easier is to employ penalized node-
average log-likelihoods (NALs). The underlying idea is to compute the local
scores Xi|πiG using the ‘locally complete’ observations and to scale them
accordingly (Bodewes and Scutari, 2021). To the best of our knowledge, no
Bayesian approach for learning BNs from incomplete data has been devel-
oped yet. To fill the gap, we build on the ‘Bayesian metric for Gaussian
networks having score equivalence’ (BGe score) of Geiger and Heckermann
(2002). We extend the structure Markov Chain Monte Carlo (MCMC)
sampler (Madigan and York, 1995) to allow for simultaneously sampling
directed acyclic graphs (DAGs) as well as the values of the unobserved
data points from the posterior distribution. Like the competing methods,
our approach assumes that values are ‘missing completely at random’.

2 Outline of theory

The goal of BN structure learning is to infer DAGs G from dataD. Following
the Bayesian paradigm, we have for the DAG posterior distribution:

P (G|D) =
P (D|G)P (G)

P (D)
(2)

where P (G) is the DAG prior probability, P (D|G) is the marginal likelihood,
and P (D) is a normalization constant. In the absence of prior knowledge,
we employ a uniform distribution for P (G). The Gaussian BGe score from
Geiger and Heckerman (2002) assumes the random vector (X1, . . . , Xn)T

to have an n-dimensional Gaussian distribution:

(X1, . . . , Xn)T|G ∼ Nn
(
µG ,ΣG

)
whose covariance matrix ΣG implies the factorization in Eq. (1). Complete
DAGs (with the maximal number of edges) do not impose any conditional
independenies. For complete DAGs the n-dimensional normal-Wishart is
used as parameter prior distribution:

µ|Σ ∼ Nn(µ0, α
−1
µ Σ) and Σ ∼ W−1

n (αw,R)

where αµ > 0, αw > n − 1, µ0 ∈ Rn and R ∈ Rn,n are hyperparame-
ters. Geiger and Heckerman (2002) show that each sample (µ,Σ) for the
complete DAGs also specifies the parameters (µG ,ΣG) of any DAG G.
Moreover, they show that the marginal likelihood of any DAG G

P (D|G) =

∫ ∫
P (D|µG ,ΣG)p(µG |ΣG)p(ΣG) dµGdΣG
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can be computed analytically and also fulfills the conditional independence
relations implied by G; cf. Eq. (1). MCMC sampling can then be used to
generate DAG samples from the posterior distribution shown in Eq. (2).
We here make use of the structure MCMC sampler from Madigan and
York (1995), and we implement it with the improvements from Giudici and
Castelo (2003). From the posterior sampled DAGs the marginal posterior
probabilities of the existence of all possible edges are estimated.
We assume that the data set D consists of N observations, where each
observation features n individual values (i.e. one value for each node Xi).
In total, there are then n · N values, and we assume that a fraction, pm,
of these values is ’missing completely at random’. The data D then consist
of two parts: the observed data Dobs and the missing data Dmiss and the
posterior distribution becomes:

P (G,Dmiss|Dobs) ∝ P (Dmiss,Dobs|G) · P (G)

For generating posterior samples we propose the following MCMC sampling
scheme, which consists of three consecutive sampling steps (S1-S3):

(S1) Given the missing values, we have that D := {Dmiss,Dobs} is a com-
plete data set. Hence, we can use the structure MCMC sampler for
sampling DAGs G from the posterior distribution P (G|D) in Eq. (2).
Loosely speaking, the DAG G is varied by proposing single edge ad-
ditions, deletions and reversals and the new DAGs are accepted with
the usual Metropolis Hastings acceptance probabilities.

(S2) Conditional on the complete data D := {Dmiss,Dobs} and the DAG
G, we can sample the model parameters from the posterior distri-
bution P (µG ,ΣG |D,G). These parameters are the expectation vec-
tor and the covariance matrix of a multivariate Gaussian distribu-
tion Nn(µG ,ΣG), whose covariance matrix ΣG must imply the condi-
tional (in-)dependence relations implied by the DAG G, as indicated
in Eq. (1). Sampling such parameters is not straightforward and can
only be done indirectly. We propose the following algorithm for it:

(S2a) Sample the expectation vector µ and the covariance matrix Σ
from the posterior distribution for complete DAGs:

Σ|D ∼ W−1
n (αw +N,T)

µ|(Σ,D) ∼ Nn
(
µ⋄, (αµ +N)−1Σ

)
where αw, αµ > 0 are hyperparameters, N is the number of
observations, and the matrix T and the vector µ⋄ can be com-
puted from the data D and the hyperparameters R and µ0,
respectively. We can use µG := µ, but the covariance matrix
Σ refers to a complete DAG, and hence it does not imply the
conditional independence relations implied by the DAG G.
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In steps (S2b-S2c) we extract from Σ a covariance matrix ΣG

that is coherent with G.

(S2b) Recall that πiG denotes the parent set of variable Xi implied by
G. Given Σ from step (S2a), compute the parameters of the n
local univariate conditional Gaussian distributions:

Xi|πiG ∼ N1(µ̃i, σ̃
2
i ) (i = 1, . . . , n)

where µ̃i and σ̃2
i are the expectation and the variance of the i-th

univariate Gaussian. The expectations are of the form

µ̃i = µi +
∑
j∈πi

G

bi,j(Xj − µj) (i = 1, . . . , n) (3)

where µj is the unconditional expectation of Xj (j = 1, . . . , n)
and bi,j can be thought of as a regression coefficient. As every
DAG follows a topological order, the nodes X1, . . . , Xn can be
ordered and relabeled such that we can re-write Eq. (3) as:

µ̃i = µi +

i−1∑
j=1

b̃i,j(Xj − µj) (i = 1, . . . , n) (4)

where b̃i,j = 0 if Xj /∈ πiG .

(S2c) Henceforth, we have the n univariate conditional Gaussians

Xi|(X1, . . . , Xi−1) ∼ N1

µi +

i−1∑
j=1

b̃i,j(Xj − µj), σ̃2
i

 (5)

and the recursive formula of Shachter and Kenley (1989) can be
used to compute the covariance matrix ΣG of the joint Gaussian
distribution of (X1, . . . , Xn)T. As we have b̃i,j = 0 if Xj /∈ πGi ,

the resulting covariance matrix ΣG is coherent with G; i.e. it
implies the conditional (in-)dependence relations from Eq. (1).

(S3) The data D are a random sample from the Nn(µG ,ΣG) Gaussian
distribution, symbolically, D = {x1, . . . ,xN} with xk ∼ Nn(µG ,ΣG).
Hence, we can loop through the observations and complete each ob-
servation by sampling the missing values conditional on the observed
values from conditional Gaussian distributions. In case of missing
data, X consists of two parts: the observed subvector Xobs and the
unobserved subvector Xmiss. Given Xobs = xobs, we have for Xmiss:

Xmiss|(Xobs = xobs,µ
G ,ΣG) ∼ Nk

(
µG
miss|obs,Σ

G
miss|obs

)
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EM EM EM EM NAL NAL NAL NAL NEW
pm BIC 0.4 0.25 0.1 BIC 0.4 0.25 0.1

0 0.63 0.69 0.63 0.63 0.62 0.69 0.64 0.63 0.75
0.1 0.66 0.68 0.65 0.63 0.57 0.58 0.61 0.61 0.75
0.2 0.66 0.67 0.63 0.57 0.51 0.51 0.54 0.58 0.75
0.4 0.66 0.67 0.63 0.56 0.53 0.53 0.52 0.54 0.71

TABLE 1. Average AUC scores for the RAF pathway. The complete data
set has n = 11 variables (proteins) and N = 3530 observations. For each pm we
generated 10 incomplete data sets by removing the fraction pm of randomly se-
lected data points. When comparing the mean AUCs of the 8 competing methods
with the mean AUC of the Bayesian method (NEW), all two-sided paired t-test
p-values were below the standard test level α = 0.05.

where k is the dimension of Xmiss and

µG
miss|obs := µG

miss + ΣG
miss,obs

{
ΣG
obs,obs

}−1 (
xobs − µG

obs

)
ΣG
miss|obs := ΣG

miss,miss −ΣG
miss,obs

{
ΣG
obs,obs

}−1

ΣG
obs,miss

The subscripts ‘obs’ and ‘miss’ refer to the subvectors and submatri-
ces that only contain the rows and columns that belong to observed
or missing data points.

2.1 Competing methods

We compare our new Bayesian approach with two non-Bayesian ap-
proaches, namely the structural EM (Friedman, 1997) and the node-average
Likelihood (NAL) approach (Bodewes and Scutari, 2021). For these meth-
ods we use the R implementation from Bodewes and Scutari (2021) and we
apply them with the same four penalty parameters (‘BIC’, 0.4, 0.25 and
0.1).

3 Empirical results

For lack of space, we only present the results of a study on phosphorylation
data from the RAF protein signalling pathway. Sachs et al. (2005) measured
the phosphorylation sites of n = 11 proteins of the RAF pathway. We use
the N = 3530 observational measurements and the gold-standard network
of the RAF pathway from Sachs et al. (2005) as proxy for the true DAG. We
distinguish four fractions of missing data pm ∈ {0, 0.1, 0.2, 0.4}. For each
pm we generate 10 incomplete data sets by deleting different randomly
selected data points. We then learn the network structure from each data
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set and quantify the network reconstruction accuracy in terms of the Area
Under the receiver operator characteristic Curve (AUC) scores. We recall
that 0 ≤ AUC ≤ 1 with higher AUCs indicating a better performance.
Table 1 shows the average AUC scores. Each average AUC in Table 1 is
across 10 data instantiations with different missing values. The new BMA
approach leads consistently to the highest average AUC score.

4 Discussion and conclusions

We have proposed a new Bayesian Model Averaging (BMA) approach for
learning Gaussian Bayesian networks from data with missing values. The
new method builds on the Gaussian BGe score and it extends the structure
MCMC sampler for DAG sampling (S1) by introducing new MCMC moves
(S2-S3) that sample the missing data points. Our empirical results suggest
that the new approach leads to a higher network reconstruction accuracy
than two non-Bayesian state-of-the-art approaches.
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Abstract: The relation between the expression of a gene and the resulting lev-
els of the corresponding protein is known to be positively correlated, but gene
expression explains only a relatively small fraction of the variance of protein
expression. This motivates the utilization of regression models in order to inves-
tigate the relationship between gene expression and protein levels. Co-expression
analysis for gene grouping is used for the regression models to additionally con-
sider the grouped genes as covariates for modeling a protein’s expression. Quality
measures are compared for the models, which show a clear improvement of the
protein modeling when including grouping information of the genes.
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1 Introduction

Proteins are encoded by an organism’s DNA and result via transcription
and translation of the gene. In this way, every protein can be uniquely
associated to a gene, resulting in standalone gene-protein-pairs. Thus, it
is a general assumption that gene expression and protein counts are pos-
itively correlated. However, this is not always the case in practice. Thus,
protein levels can not necessarily be modeled reliably solely by their asso-
ciated gene as covariate. Hence, the idea of this work is to additionally con-
sider congeneric genes from a gene co-expression analysis. As an organism’s
genome comprises a large amount of genes and the number of samples in
toxicological studies is typically small, regularization methods can address
this problem and also handle multicollinearity among covariates (Breiman,
1996). The proposed regression models for protein modeling as well as the
co-expression analysis are further described in Section 2. In Section 3, the
underlying data structure for the gene-protein-models is specified and the

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
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main results of the real data application are emphasized in Section 4. Fi-
nally, Section 5 concludes with work in progress.

2 Statistical Analysis

The main goal of this work is the investigation of transcriptomics and pro-
teomics relationship and to improve prediction performance of proteins.
This is achieved by modeling the protein expressions (PE) as target vari-
able with gene expressions (GE), treatment (T) and duration (D) as covari-
ates. The models that are considered for a single gene-protein-pair j sep-
arately are listed in formulas (1) - (4) below. The simplest models (model
(1) and (2)) with the pair’s gene expression as covariate serve as baseline
models. Those models can be treated as ordinary linear regression model,
as the PEs can be assumed to be normally distributed. The next step is
to include grouped genes (details will follow below) and, eventually, the
corresponding proteins as covariates (model (3) and (4)). Here, for a gene-
protein-pair j, Ij is the index set of all Gj genes, which are associated
to GEj , including GEj itself. When including large amounts of covariates
from the grouping process, multicollinearity may become an issue and the
problem of the number of parameters exceeding the sample size needs to
be addressed. This can be achieved by utilizing regularization techniques,
such as LASSO (least absolute shrinkage and selection operator) regres-
sion. Here, the minimization problem of the ordinary regression model is
penalized by an additional penalty term on the absolute coefficient val-
ues (Tibshirani, 1996) and which is implemented in the R-package glmnet

(Friedman et al., 2010). The respective pair’s gene GEj is assumed to al-
ways affect the corresponding protein and, therefore, is excluded from the
shrinkage process.

PEj = β0 +GEj · βGE,j (1)

PEj = β0 + (T, D, GEj)
T · β (2)

PEj = β0 + T · βT +D · βD +
∑
k∈Ij

GEk βGE,k (3)

PEj = β0 + T · βT +D · βD +
∑
k∈Ij

GEi βGE,k +
∑

k∈Ij\j

PEk βPE,k (4)

These regression model approaches can then be evaluated by comparing
certain goodness-of-fit measures. In the following, we use the adjusted R2

as the proportion of variance that can be explained by a model whilst tak-
ing the penalization of the parameter number into account. Additionally,
the Akaike information criterion (AIC) is considered as an in-sample mea-
sure, which provides a direct trade-off between goodness-of-fit and model
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complexity. Moreover, the prediction error as an out-of-sample measure is
computed as the root mean square error (RMSE) using the predictions of
a test sample based on the model fitted on a training sample. For this, one
observation of each realized treatment-duration combination is randomly
drawn to form the test sample and the model is fit on the remaining ob-
servations. The final prediction error is then the average across d-times
randomly drawn train-test-splits.
For gene grouping in gene expression data, weighted co-expression anal-
ysis (Zhang and Horvath, 2005) is perfectly suitable and used in the fol-
lowing. Whether two genes i, j are denoted as co-expressed depends on a
specified similarity measure sij , typically the absolute Pearson correlation,
and a threshold. Based on the similarity measure, an adjacency function
aij = |sij |δ is used, which is specifically suitable for soft thresholding and
depends on a power coefficient δ ∈ N. Now, for identification of gene groups,
hierarchical clustering is applied based on a distance measure dij , which
is constructed with the help of the adjacency function. In particular, it is
defined as dij := 1−ωij , where the similarity measure ωij is the topological
overlap of two genes i, j, with

ωij =
lij + aij

min(ki, kj) + 1− aij
,

and lij =
∑
u
aiuauj and ki =

∑
u
aiu. For determination of the threshold pa-

rameter δ of the adjacency function, a scale-free topology criterion (Zhang
and Horvath, 2005) can be applied. Roughly, for increasing power values for
δ, a scale-free topology index R2

top and the mean topological-overlap-based

connectivity mean(k) with k =
n∑
j=1

ωij are computed. The index R2
top is a

measure of how well a grouping process satisfies a scale-free topology and
is based on the quadratic correlation between the logarithmic connectivity
k and the logarithm of its frequency distribution. For further information
we refer to Zhang and Horvath (2005). The power δ is then chosen as the
one that maximizes the scale-free topology index R2

top, while keeping a
pre-specified level of mean connectivity mean(k).

3 Data Structure

To apply the statistical models to real omics data, gene expression data as
well as protein data from 36 mice is available. The data covers the investiga-
tion of how liver fibrosis influences lobular zonation. Of the 36 mice, a test
sample of 18 mice were induced carbon tetrachloride (CCl4, 1 g/kg b.w.
in olive oil) twice a week for a duration of 2, 6 or 12 months to induce
pericentral damage. The remaining 18 mice form the control group and
were treated only with olive oil in the same way as the CCl4-treated mice
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over a duration of 0, 6 or 12 months. The samples were captured 6 days
after the last injection. Overall, after pre-processing both omics-data, 1,246
clear gene-protein-pairs form joint sub-data sets including both the genes
from the gene expression data set and the proteins from the protein data
set. It comprises information of the pairs’ associated gene expression values
and protein expressions as well as information on the treatment (CCl4/oil)
and duration (∈ {0, 2, 6, 12} months). The gene expression values do not
contain any missing values. However, not all 36 mice cover full information
for the protein data. Protein expressions contain systematical and unsys-
tematical missing values, leading to a maximum of 31 mice with complete
information per gene-protein-pair, which is especially relevant for the later
regression analyses, as the number of parameters to be estimated can not
exceed the number of observations.

4 Main Results

To take an initial look at the gene-protein-data and the relation between
gene expressions and protein levels, the Pearson correlations between those
variables are briefly investigated. Figure 1 shows the empirical Pearson
correlations of all gene-protein-pairs across all mice as well as separately
for both treatment groups oil and CCl4. The majority of gene-protein-pairs
is positively correlated, but as mentioned in the introduction, by far not all
of them are highly correlated and there is also a non-negligible amount of
negatively correlated pairs. It is also striking that the empirical correlation
overall rises for mice that are induced CCl4. In contrast, the correlation
for oil-treated mice seems to be centered around zero.
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FIGURE 1. Boxplots of the Pearson correlations of all gene-protein-pairs for all
mice samples and separately for CCl4-treated and oil-treated mice.

In the next step, the co-expression analysis with a chosen optimal power
level of δ = 1 yields a total of 6 gene groups with the smallest group only
containing 12 genes and the largest group consisting of 451 genes. To ob-
tain an overview, all group sizes are listed in Table 2. Proceeding to the
statistical modeling of the protein data, the goodness-of-fit results are dis-
played in Table 1. Note that each gene-protein-pair sub-data set is modeled



Heiner et al. 455

separately. Thus, the measures are averaged across all pairs. The results of
model (1) show that, averaged across all gene-protein-pairs, only a small
percentage of variability in the protein expressions can be solely explained
by the respective gene expression values. When additionally considering the
experiment settings Treatment (T) and Duration (D) as covariates, the ex-
plained variance by model (2) is larger and the AIC also indicates a better
model fit, however, the out-of-sample prediction error is roughly the same.
This model can be seen as the baseline model for the gene-protein-modeling
in this analysis. It also suggests the inclusion of the experiment settings
in the further modeling. Moreover, including the information of the co-
expression analysis and using the regularized LASSO regression increases
the overall quality of the model fits. Finally, when additionally including
the protein levels of the grouped gene-protein-pairs as covariates in model
(4), it is apparent that both the adjusted R2 and the prediction error in-
dicate the best fit. In contrast, the AIC on average favors model (3) with
only including the grouped genes’ expressions as covariates over model (4).
However, as proteins might not actually affect each other in general and
the results might be influenced by coincidental collinearity issues between
the investigated protein and the other predictor variables, the biologically
reliable choice might be to select model (3) here. When taking a closer look
at the results of model (3) separately for all gene-protein-pairs, it might be
of interest, which pairs achieve the highest model fit improvements when
including grouping information, i.e. when comparing model (3) to the base-
line model (2). Overall, out of the 1,246 pairs, the models of only 6 pairs
obtain worse AIC values when considering grouping information. Particu-
larly, the gene-protein-pairs Glul-P15105, Dnajc3-Q91YW3, Krt1-P04104
and Gda-Q9R111 reveal the highest improvement among all pairs.

TABLE 1. Model comparison for regression models with target variable Protein
Expression (PE) based on the mean adjusted R2, the mean prediction error
(RMSE) and the mean AIC.

adjusted R2 RMSE AIC

Model (1) 0.070 1.377 52.095
Model (2) 0.289 1.400 51.094
Model (3) 0.340 1.153 -79.689
Model (4) 0.793 0.917 -73.130

TABLE 2. Group sizes of the 6 groups resulting from the co-expression analysis.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Size 385 208 12 34 451 42
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Further Annotations

Note that this project is still work in progress. Thus, the approaches above
might be elaborated further and the real data application might be sub-
stantiated by a simulation study. Furthermore, the modeling of proteins via
multiple genes might be somehow artificial, as variable selection is not di-
rectly of interest because, in theory, the protein values mainly depend on the
gene counts of the corresponding gene. Thus, this modeling of proteins via
grouped genes might violate biological correctness. Altogether, within the
presented approach, it is possible to modify the investigation by considering
other target variables while keeping the main approach of grouping omics
data and include them as covariates. Additionally, this approach could be
extended by e.g. considering overlapping groups. One strategy could for
example be the implementation of these overlaps in order to construct an
extension of the sparse group LASSO (Simon et al., 2013).

Acknowledgments: This work has been supported (in part) by the Re-
search Training Group ”Biostatistical Methods for High-Dimensional Data
in Toxicology” (RTG 2624, Project I5) funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation - Project Number 4278-
06116).
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Abstract: In this work we present a novel methodology to fit a generalized func-
tional regression model for partially observed functional data avoiding the curves
reconstruction and assuming the basis representation of both, the functional co-
efficient and the functional covariate. The model’s coefficients are estimated via
Penalized Quasi-likelihood using the mixed model representation of a penalized
spline. We test our methodology in a real classification problem with a data set
of aneurysm patients.
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1 Introduction

Functional data analysis is one of the fastest growing fields in statisti-
cal analysis. Modern data sets often consist of complex objects, such as
functions. Functional data is usually found as discrete and often noisy ob-
servations of the true underlying function, measured at different locations
in time, space, or other continuum. In most cases it is assumed that all
functions are observed over the full extension of their domain. However,
in many real data sets, each curve is observed in a subset of the domain,
which may even be different for each curve. This type of data is know as
partially observed functional data.
In this work we present a new methodology to fit a generalized scalar-on-
function regression model to deal with this type of data. The proposed

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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functional model considers each curve only within its observed subset of
the domain; also a penalty is added to the estimation of the functional
coefficient in order to control its smoothness trough the smoothing param-
eter. Additionally a basis representation of the functional data and the
functional coefficient of the model is assumed. This representation allows
us to transform the functional model into a mixed effect model and then
estimate directly all the model coefficients including the smoothing param-
eter. We use B-spline basis for our representations but other suitable basis
can be chosen. The performance of the proposed model is tested on a real
classification problem.

2 Methodology

Given the following sample data: {Yi,Ci, Xi(t)}, i = 1, . . . , N, t ∈ T , where
Ci are the non-functional covariates, Xi(t) is the functional covariate with
sample observations xij = X(tij) and with observation points that falls
in a subset of the domain T , i.e., tij ∈ [di, Ti] = Di ⊆ T . The response
variable Yi follows an exponential family distribution with mean µi. The
propose model is:

ηi = g(µi) = α+ Ciγ +
1

Di

∫
Di

Xi(t)β(t) dt, t ∈ Di. (1)

This model considers each sample curve Xi(t) only in its domain and hence
variable integration limits for each curve are considered.

2.1 Sample estimation

In order to estimate (1) the first step is to consider the basis representation
of the functional covariate and the functional coefficient:

Xi(t) =

p∑
j=1

aijϕij(t) = ϕT

i (t)ai,

β(t) =

q∑
k=1

bkφk(t) = φT(t)b,

where ϕi(t), φ(t) are the basis used in the representation of the functional
covariate Xi(t) and the functional coefficient β(t), respectively, with ai and
b the respective basis coefficients. Cubic B-splines basis has been considered
in both basis representations.
By assuming these representations, the model (1) is transformed into a
multivariate regression model:

η = α + Cγ + 1
D

∫
D
X(t)β(t) dt

= α + Cγ + AΨb= Bθ,
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with (A)N×Np a block diagonal matrix, which i-th block of the diagonal
is aTi , and (Ψ)Np×q = (Ψ1, . . . ,ΨN )T , where Ψi = 1

Di

∫
Di

ϕi(t)
Tφ(t) dt.

In order to correctly calculate the matrix of inner product Ψ the basis
φ(t) must be carefully constructed. Notice that the domain of this basis
corresponds with the full domain T , but the limits of integration of every
block matrix of inner product in Ψ are, in principle, smaller than T . Then
for the calculation of this inner product matrix the basis ϕi(t) is being
multiplied by a basis resulting of selecting the corresponding knots of
the basis φ(t) that falls inside the domain Di, i.e., the number of knots
selected of the basis φ(t) varies in every inner product matrix Ψi.

The resulting multivariate regression model falls into the category of
generalized linear models and therefore we use the maximum likelihood
method in order to estimate the model parameters. Since the functional
coefficient has been represented using a B-spline basis, the smoothness of
the resulting estimated coefficient is determined by the basis dimension.
To avoid the problem of choosing the optimal number of basis functions a
penalized likelihood approach is considered. The final penalized likelihood
equation is Lp(θ,y) = L(θ,y)− 1

2θ
TPθ, where L(θ,y) is the likelihood of

Y and P is the penalty term, based on differences of adjacent B-splines
coefficients. We take here this second approach, resulting in a penalty
matrix P = λt(D

T
qDq).

In order to efficiently estimate the smoothing parameters λt together
with the rest of the parameters in the model, the proposed model is
reparametrized as a mixed model. Therefore, we are in the context of Gener-
alized Linear Mixed Models (GLMMs) and the model estimation is carried
out by Penalized Quasi-Likelihood (Breslow N. E. et al, 1993). To speed
up computations, the SOP( Separation of Overlapping Penalties) algorithm
(Rodŕıguez-Álvarez, M. et al., 2019) has been used.

3 Real data application

The AneuRisk65 data set https://statistics.mox.polimi.it/aneurisk consists
of profiles of radius and curvature of the internal carotid artery of 65 sub-
jects suspected to be affected by cerebral aneurysms, the data is shown in
Figure 1 where can be seen that the domain where each curve is observed
varies across subjects.

The goal is to classify each patient into one of two groups depending on the
presence and location of the aneurysms (Stefanucci, M. et al, 2018) and for
that the following functional logistic regression model is proposed:

η = log(
π

1− π
) = α+

1

D1

∫
D1

X1(t)β1(t) dt+
1

D2

∫
D2

X2(t)β2(t) dt,
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FIGURE 1. Radius (left) and curvature (right) of the internal carotid arteries
of 65 subjects. The circles indicate the starting and ending points of each curve.
Two different colors are used for subjects in the Upper group (blue) and subjects
in the Lower–No group (orange).

where Xi(t) and βi(t), i = 1, 2 are the functional covariate and coefficient
corresponding with the radius and curvature, respectively. Notice that
the previous model presents two functional covariates and no non-
functional covariates, but the application of the proposed methodology is
straightforward, with the design matrix of the multivariate model being
B = [1|B1|B2], where Bi = Ai ·Ψi, i = 1, 2 and the coefficient vector is
θ = [α|b1|b2]

T
.

As proposed by Stefanucci, M. et al (2018) the data set was analyzed by
splitting the full domain T into different portions Tl. These portions of
the domain go from the common domain T1 to the full domain T and each
consecutive portion contains the previous one, i.e., T1 ⊂ T2 ⊂ . . . ⊂ T .
Then, For each of these portions, the proposed methodology was applied.

The errors have been calculated using a Leave-on-out classification,
and the optimal cut-off point for the model has been calculated by
selecting between the following two criteria the one that minimizes the
miss-classification error.

� Criterion 1: Maximize the sum of the sensitivity and the
specificity.

� Criterion 2: Maximize the sum of the Positive Predictive
Value (PPV) and the Negative Predictive Value (NPV).

According to Christensen, E. (2009) criterion number 2 is more useful when
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dealing with medical problems and shows better results in an out-sampling
error measure as the leave-one-out classification. In fact, the best results
in our data set had always been achieved when using this criterion. But
this criterion is not perfect since it is influenced by the distribution of the
data and according to Trevethan, R. (2017) it should not be used when
data presents a big proportion of positive cases and a small proportion of
negative cases or vice versa (unbalanced data). This problem is not present
in our data set since the number of positive cases is 33 and the number of
negative cases is 32. The smallest error obtained was 11 and corresponds
to the full domain, thes results are shown in Figure 2.

FIGURE 2. Leave-one-out miss-classification error for various domain extensions
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Abstract: Multicenter randomized clinical trials are commonly used in medi-
cal research to test the effectiveness of interventions across multiple treatment
centers. However, treatment effects may vary between centers due to differences
in patient characteristics, clinical practices, or other factors. This variation in
treatment effect, known as treatment effect heterogeneity, may affect the validity
and generalizability of study findings as it may lead to biased treatment effect
estimates. Thus, detecting treatment effect heterogeneity between centers is cru-
cial in the analysis of these studies. Our proposed method involves modeling each
individual outcome variable using a generalized linear mixed-effects model. The
heterogeneity of a variable’s treatment effect is then assessed by estimating a
P -value for each center, testing whether the center’s treatment effect deviates
significantly from the study-wide treatment effect. Each center’s collection of
P -values across multiple outcome variables is summarized in a single statistic,
called the Treatment Effect Inconsistency Score (TEIS). The center’s TEIS is a
significance probability estimated using a resampling strategy that down-weights
highly correlated tests. The database of a large randomized clinical trial with
known fraud was analyzed with the aim to detect the fraudulent center having
an atypical treatment effect for multiple variables.
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1 Testing for treatment effect consistency

Consider a multicenter randomized clinical trial with Nc centers and center
j contains nj patients where j = 1, . . . , Nc indexes centers. Suppose out-
come data are collected for each patient on Nv outcome variables such as

a response to treatment, a toxicity to treatment, etc. Let Y
(k)
ij denote the

kth outcome for patient i in center j where i = 1, . . . , nj indexes patients
and k = 1, . . . , Nv indexes variables. Variable Tij is the treatment group
indicator of the ith patient with T = 0 for the control treatment and T = 1
for the experimental treatment.
First, the study-wide treatment effect on each outcome variable Y (k) is esti-
mated by fitting a generalized linear mixed-effects model with link function
g(·), e.g. linear or logistic, depending on the type of variable. The regres-
sion model includes a fixed treatment effect and a random center effect to
account for variability in the outcome among centers:

g
(
Y

(k)
ij

)
= α+ βTij + sj + εij , sj ∼ N

(
0, σ2

c

)
, εij ∼ N

(
0, σ2

p

)
for each variable k = 1, . . . Nv. By fitting this model, we obtain estimates
for the mean outcome of the control group (α), the study-wide treatment
effect on the kth outcome (β), and the random effect (sj) for center j which
is normally distributed with variance σ2

c , independently from the residual
errors εij ∼ N

(
0, σ2

p

)
.

Next, the treatment effect tej is measured in each individual center j for
each outcome Y (k). For example, if Y (k) is a continuous variable, we com-
pute the sample mean of the control group (mj,0), resp. treatment group
(mj,1), in center j and measure the treatment effect in center j as the dif-
ference between the means: tej = mj,1 −mj,0. If Y (k) ∈ {0, 1} is a binary
variable, we compute the sample odds of Y (k) = 1 for the control group
(oj,0), resp. treatment group (oj,1), in center j and measure the treatment
effect in center j as the log odds ratio: tej = log (oj,1/oj,0). If the treatment
effect on an outcome variable would be consistent across the centers, one
expects tej = β for each center j = 1, . . . , Nc.
We test in particular for centers that have a weaker treatment effect on
variable Y (k) compared to the study-wide treatment effect through the
P -values of the one-tailed test, taking into account the direction of the
study-wide treatment effect (i.e. the sign of β)

H0 : sign(β) · tej ⩾ sign(β) · β vs H1 : sign(β) · tej < sign(β) · β

for each center j = 1, . . . , Nc and each outcome k = 1, . . . , Nv.
The consistency of treatment effect on the Nv outcome variables across
the Nc centers is more efficiently assessed through a summary score for
each center using the tests performed on all outcome variables. The Treat-
ment Effect Inconsistency Score (TEIS) is calculated for each center j
(j = 1, . . . , Nc) (Trotta, 2019):
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1. Let pjk be the P -value associated with center j for the kth test (k =
1, . . . , Nv). First, the score Sj for center j is calculated as

Sj =
1∑Nv

k=1 wk

Nv∑
k=1

wk log pjk

where the weights wk account for the correlation between the tests.

2. TEIS of center j is the significance probability Pj , on a log-scale, as-
signed to score Sj using a resampling method: TEISj = − log10(Pj)

A TEIS of 1.3 = − log10(0.05) or larger corresponds to an overall P -value
(Pj) less than 0.05. As such, the treatment effect in a center is identified as
atypical if its TEIS > 1.3, considering the tests for all outcome variables.

2 Multicenter clinical trial with known fraud

We used patient-level clinical data from a published trial to demonstrate
how our method identifies centers with atypical treatment effect. In one of
the 59 centers in the trial, it was later found that most of the 219 patients
randomized in that center had never received the study therapies. (Hoek-
sema et al., 2000). The dataset includes 1758 placebo patients and 1760
treatment patients. We analyzed the treatment effect on 3 continuous vari-
ables and 7 binary variables (e.g. “Did the patient have a stroke during the
trial? Yes or no”). The goal was to find out if our method could identify the
known fraudulent center. First, we apply our test to each of the 10 variabes
with the aim of detecting centers with weaker treatment effect compared to
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FIGURE 1. Bubble plot showing 4 centers with a Treatment Effect Inconsistency
Score (TEIS) > 1.3 (overall P -value < 0.05). Center with known fraud in red.
The size of each bubble is proportional to the number of patients in the center.
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the study-wide treatment effect. As such, a P -value is estimated for each of
the 59 centers for each of the 10 variables. Each center’s set of 10 P -values
is then summarized in its Treatment Effect Inconsistency Score (TEIS).
Figure 1 shows the “bubble plot” with each bubble positioned according
to the number of patients (x-axis) and TEIS (y-axis) of a center. Of the 59
centers, 4 are identified as having an atypical treatment effect (TEIS > 1.3,
magenta bubbles), including the known fraudulent center (red bubble) hav-
ing the highest TEIS = 2.34 (overall P -value of 0.0046). The P -values of
the fraudulent center are presented in Table 1 showing that the treatment
effect is significantly weaker on erythrocytes in particular.

TABLE 1. P -values of the fraudulent center.

Erythrocytes Hematocrit Hemoglobin Adverse event Stroke
0.00048 0.063 0.196 0.314 0.439

TIA Complaints Gastric pain Headache Bleeding
0.786 0.219 0.015 0.098 0.064

Figure 2 shows the estimated treatment effect (tej) on erythrocytes (y-axis)
versus the number of patients (x-axis) in each center. The figure shows 3
centers with an atypical weak treatment effect on erythrocytes (P -value
< 0.05, magenta bubbles), including the fraudulent center (red bubble).
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FIGURE 2. Treatment effect on erythrocytes vs. center size.
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Abstract: Randomized experiments cannot determine the impact of migrant
work on the rate of return to education due to the inability to randomly assign
rural populations to rural and urban households. Under Rubin causal models,
we evaluate the effect of migrant work on the rate of return to education of
compliers by estimating the complier average causal effect (CACE) parameter.
Our analysis focuses on data from rural and migrant residents in China in 2013,
and we construct estimators of unknown parameters and the Mincer earnings
function using a linear combination of polynomial spline functions. The empirical
results indicate that migrant work increases the rate of return to education of
compliers by 3.57%. These results provide a scientific evaluation of the social and
economic value of migrant work during the economic transition period, from a
human capital perspective.

Keywords: migrant work; rate of return to education; Complier Average Causal
Effect; partial linear models; gender differences.

1 Introduction

Estimating the rate of return to education is a fundamental task in ed-
ucational economics. The rate of return to education is a measure of the
future net economic remuneration for an educated individual caused by
one extra year of schooling. However, since the rural population cannot be
randomly assigned to rural households and rural-to-urban migrant house-
holds, it is not possible to perform a randomized experiment to obtain the
effect of migrant work on the rate of return to education. The Complier
Average Causal Effect (CACE) parameter obtained under the principal
stratification framework is a popular method to solve this kind of problem
(Frangakis and Rubin, 2002). The Mincer earnings function (Mincer, 1974)

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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is the most widely used model for estimating the rate of return to education
(Polacheck, 2008).
Based on Rubin causal models, empirically evaluates the impact of migrant
work on the rate of return to education using a dataset from the 2013 wave
of the Chinese Household Income Project (CHIP) survey. In the Mincer
earnings function, we replace the linear relationship between work experi-
ence and the log of income with an unknown smooth function, which can be
approximated by a polynomial spline. Our results show that migrant work
can increase the rate of return to education of the compliers by 3.57%. At
the micro level, our research provides scientific evidences for the need of
educational investments in favor of the Chinese rural population.

2 Notation and Assumptions

The Mincer earnings function (Mincer, 1974) is a single-equation model
that explains wage income as a function of schooling and work experience.
We here consider the model as

log (1 + E) = β0 + β1S + g(Exper) + ε,

where E represents earnings (in CNY), S indicates the years of schooling.
Exper stands for the work experience computed as age− S − 6 (Du et al.,
2023), and ε is an unobserved random error with mean 0 and variance σ2.
For the ith individual, let Di denote the treatment received. Specifically,
Di = 1 if the ith individual is a migrant resident, while Di = 0 if the
ith individual is a rural resident; and Zi denote the randomized treatment
assignment. Based on China’s geography and a preliminary data screening,
individuals living closer to Beijing are supposed to be more likely to move
for labor. Thus, exploiting the information from the Chinese administra-
tive division, we set Zi = 0 if the ith individual’s province belongs to the
Northeast or North China regions, while we set Zi = 1 if the ith indi-
vidual’s province is in East China, Central China, South China, Southwest
China or Northwest China. Assuming that n individuals are independent, a
random sample {(Di, Zi, Si, Experi, Ei), i = 1, . . . , n} can be obtained. For
simplicity of notation, we shall use X = (S,Exper)T and Y = log (1 + E).
Moreover, let Di(z) and Yi(z) denote the potential treatment received and
the potential outcome for the ith individual under treatment Z = z, re-
spectively.
We refer to the “principal stratification” framework proposed by Angrist
et al. (1996) and Frangakis and Rubin (2002) to analyze causal effects. Let
Ui be the compliance status of the ith unit, defined as follows: Ui = c if
Di(0) = 0 and Di(1) = 1; Ui = n if Di(0) = 0 and Di(1) = 0; Ui = a
if Di(0) = 1 and Di(1) = 1; and Ui = d if Di(0) = 1 and Di(1) = 0.
The values c, n, a, and d stand for complier, never-taker, always-taker, and
defier, respectively. Here we consider the CACE(x), which equals

CACE(x) = E{Y (1)− Y (0)|U = c,X = x}
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where Y (1) represents the potential outcome if Z = 1, and Y (0) represents
the potential outcome if Z = 0.
In order to guarantee the CACE(x) identifiable, some sufficient conditions
on the latent variables are needed. There are seven basic assumptions com-
ing from Angrist et al. (1996); Zigler and Belin (2011) and Chen et al.
(2015). We are not specified here.
To estimate CACE(x), we proposed following three steps procedure given
the random sample {(Di, Zi, Xi, Yi), i = 1, · · · , n}:

Step 1: Obtain P (Z = 1), P (U = n|X = x) and P (U = a|X = x)

If nz = ♯{i : Zi = 1}, then P (Z = 1) = n1/n. Following to Frangakis and
Rubin (2002), Barnard et al. (2003) and Zigler and Belin (2011), we are
able to obtain P (U = u|X = x), u = n, a, c, where

Ψn(X) = P (U = n|X = x) = 1− Φ(δ⊤n X̃),

Ψa(X) = P (U = a|X = x) = {1−Ψn(X)}Φ(δ⊤a X̃) = Φ(δ⊤n X̃)Φ(δ⊤a X̃),
Ψc(X) = P (U = c|X = x) = 1−Ψn(X)−Ψa(X),

where Φ(·) is the cumulative distribution function of the standard normal
distribution. Since year of schooling and work experience are both non-
negative and large in value, we consider the logarithm effect and let X̃i =
{1, logSi, log(Experi)}⊤.

Step 2: Obtain (β̂n, ĝn, σ̂
2
n) and (β̂a, ĝa, σ̂

2
a)

The B-spline approximation of g(Exper) can be expressed as

g̃(Exper) =

Nn∑
j=1

γjBj(Exper)−
1

n

n∑
i=1

Nn∑
j=1

γjBj(Experi).

where γ = (γ1, γ2, . . . , γNn
)⊤ is the Nn-dimensional vector of coefficients,

given that the number of knots Nn satisfies n1/4 ≪ Nn ≪ n1/2. Henceforth,
we denote g̃(Exper) by γ⊤B(Exper). According to the compound exclu-
sion restrictions, we denote pn(y|x;βn,γn, σ

2
n) = p1n(y|x;β1n,γ1n, σ

2
1n) =

p0n(y|x;β0n,γ0n, σ
2
0n) and compute the likelihood function for the never-

taker with (Zi, Di) = (1, 0) as

L10(βn,γn, σ
2
n) =

∏
i:(Zi,Di)=(1,0)

pn(y|x;βn,γn, σ
2
n),

and find the estimators β̂n, ĝn and σ̂2
n. Likewise, we have pa(y|x;βa,γa, σ

2
a)

= p1a(y|x;β1a, γ1a, σ
2
1a) = p0a(y|x;β0a,γ0a, σ

2
0a) and can obtain the esti-

mator β̂a, ĝa and σ̂2
a by focusing on the always-taker with (Zi, Di) = (0, 1).
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Step 3: Obtain (β̂1c, ĝ1c, σ̂
2
1c) and (β̂0c, ĝ0c, σ̂

2
0c)

Finally, we maximize the likelihood function for the complier with
(Zi, Di) = (1, 1)

L11(β1c,γ1c, σ
2
1c) =

∏
i:(Zi,Di)=(1,1)

{
Ψa(X; δ̂n, δ̂a)pa(y|x; β̂n, γ̂n, σ̂

2
n)

+Ψc(X; δ̂n, δ̂a)p1c(y|x;β1c,γ1c, σ
2
1c)
}
,

to compute the estimators β̂1c, ĝ1c and σ̂2
1c. Similarly, we get β̂0c, ĝ0c,

σ̂2
0c by focusing on (Zi, Di) = (0, 0). Therefore, the CACE

(
x; β̂c, ĝc, σ̂c

)
with β̂c = (β̂0c, β̂1c)

T = (β̂1c,0 − β̂0c,0, β̂1c,1 − β̂0c,1)T and σ2
c unknown

parameters can be estimated by

CACE
(
x; β̂c, ĝc, σ̂c

)
= β̂0c + β̂1cS + (γ̂⊤

1c − γ̂⊤
0c)B(Exper),

σ̂2
c = σ̂2

1c + σ̂2
0c,

respectively.

3 Data Analysis

TABLE 1. Descriptive statistics of the data.
Variable Mean Standard deviation Minimum Maximum

D = 1 D = 0 D = 1 D = 0 D = 1 D = 0 D = 1 D = 0
Logarithmic annual income 10.256 9.904 0.835 0.834 0 0 12.739 13.592

Years of schooling 9.565 8.78 2.908 2.784 0 0 19 20
Experience 19.32 20.7 10.108 11.745 4 0 44 44
Sample size 1237 15245 1237 15245 1237 15245 1237 15245

We focus here on the subsamples of migrant and rural individuals of the
CHIP. In this study, rural data are based on a sample with 39,408 individ-
uals and migrant data on a sample with 2,839 individuals. After cleaning
the data, the records used for our analysis were described in Table 1, which
shows the basic statistical summaries of the variables involved in the sam-
ple, where D = 1 identifies migrant units and D = 0 identifies rural units.
Partial results obtained from the analysis of the CHIP data based on the
proposed estimation method show that the estimated rate of return to
education of the always-takers is 3.60% whereas that of the never-takers is
almost three times greater, i.e. 9.10%. The estimate of the rate of return
to education is 6.62% for the migrant compliers and 3.05% for the rural
compliers, so that migrant work serves to increase the rate of return to
education of the compliers by 3.57%.
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Abstract: The modelling of count data in real world scenarios involves models
that account for overdispersion. Several overdispersion models are contained in
the generalized linear modelling framework, being extensions of the basic Poisson
model. It is common to assess goodness-of-fit graphically by using half-normal
plots with a simulated envelope. The envelope is such that under a well-fitting
model one would expect very few points to lie outside of the envelope. However,
very similar graphs may be obtained for closely related models. This paper tries
to evaluate the influence of the residual points falling outside the envelope and
the contribution of these points to the construction of a numerical summary for
half-normal plots.

Keywords: Generalized linear models; Goodness-of-fit; Half-normal plots

1 Introduction

Ecological studies include research on the wide variety of flora and fauna on
Earth. It is common to record observations in ecological studies as counts,
e.g. number of species or number of animals. It is not viable to model
counts using Gaussian linear regression models, since they are not a suitable
method to examine non negative discrete data. Typically we analyse count
data using the Poisson model or extended versions of it, to account for
either under- or overdispersion. It is important, then, to check whether
model assumptions are valid, and whether the observed data are a plausible
realisation of the fitted distribution. Half-normal plots with a simulated

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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envelope are a useful tool in this case. Here, we propose summary statistics
based on half-normal plots to aid model comparison.

1.1 Half-normal plots with a simulated envelope

Half-normal plots with a simulated envelope are created by plotting ordered
residuals, in absolute value, versus the expected order statistics of a half-
normal distribution:

Φ−1

(
i+ n− 1

8

2n+ 1
2

)
(1)

where Φ−1(·) is the inverse of the Gaussian cumulative distribution func-
tion, i is the i−th order statistic, 1 ≤ i ≤ n, and n is the sample size.
The simulated envelope is constructed by (i) simulating 99 or more response
variables using the same distribution, design matrix, and fitted coefficients;
(ii) re-fitting the same model to each simulated sample; (iii) calculating the
same type of residuals, in absolute value and in order; and (iv) computing
desired percentiles for each order statistics (usually 2.5% and 97.5%). The
median is also computed, and shown as a dashed line in the plot.
Figure 1 shows half-normal plots with a simulated envelope for the normal,
Poisson and negative binomial models fitted to two simulated datasets; the
first from a Poisson distribution, and the second from the negative binomial
distribution. We see that the normal model does not fit the data well in both
instances, whereas the negative binomial model presents good performance
for both simulated datasets. Our question is: is it possible to differentiate
the performance of the Poisson vs. negative binomial model for the first
simulated dataset, where both fit the data well? This is expected, since the
negative binomial is an extension of the Poisson model, however in this
case parsimony would lead one to select the Poisson model to analyse the
data.

2 Methodology

We construct a statistic based on distances from the residual points to parts
of the envelope Ei = {x ∈ R|x ∈ (li, ui)}, namely the envelope median mi,
upper (ui) and lower (li) bounds. The statistic is given by:

d =

n∑
i=1

di =

n∑
i=1

(ri −mi)
2g(bi)

I(ri∈Ei),

where ri is the i−th ordered residual and g(bi) is a function of the distance
of the residual point to the boundary of the envelope:

bi =

{
ri − ui, if ri > ui

li − ri, if ri < li
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FIGURE 1. Half-normal plots with a simulated envelope for different models
fitted to data simulated from a Poisson distribution (a) Normal model, (b) Pois-
son model and (c) Negative binomial; and from a negative binomial model with
quadratic variance with a dispersion value of 1.5, (d) Normal model (e) Poisson
model and (f) Negative binomial model with quadratic variance.

The indicator function I(ri ∈ Ei) is equal to 1 if the residual point is
contained in the envelope and equal to 0 otherwise, therefore the penalty
function g only influences the metric if the point is outside of the envelope.
We tested five different variations of g(b):

� constant/no penalty: g(b) = 1,

� unlimited linear increase: g(b) = α+ γb,

� saturated increase (ratio): g(b) =
α+ γ1b

1 + γ2b
,

� saturated increase (logistic): g(b) =
α+ γ

1 + exp−δ + (b− η)
and

� saturated increase (hyperbolic tangent): g(b) = α+ γ tanh δb.

The hyper-parameters α, β, γ, γ1, γ2, η and δ are assumed to be known
and fixed. The penalties are introduced to differentiate, for instance, resid-
ual points that are close to either ui or li, but inside the envelope (and
therefore expected under the fitted model), from points barely outside of
the envelope, which should be more penalised, since that would not be
expected under the fitted model most of the time.

2.1 Simulation study

We carried out a simulation study with 1,000 simulated samples from
each of three sample sizes (20, 50, and 100) and five parent models (Pois-
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son, negative binomial with a quadratic variance function with strong and
mild overdispersion, negative binomial with a linear variance function with
strong and mild overdispersion). We fitted three models to each simulated
sample (Poisson and negative binomial with quadratic and linear variance
functions), produced a half-normal plot with a simulated envelope for the
Pearson residuals and computed d.

3 Results and discussion

We found no influence of the different penalty functions g(b) on the dis-
tance measure (Figure 2). This pattern is seen across all parent models
considered. When the Poisson model is the parent distribution, there is
no significant difference between the distance values calculated for all the
fitted models, as these models behave similar to Poisson when the disper-
sion parameter is zero (Figure 2(a)). When simulating from overdispersed
parent distributions (Figure 2(b)), we found that d shows that the Poisson
model is not preferable.

FIGURE 2. Natural logarithm of d for the five penalty functions and three sam-
ple sizes, for the (a) Poisson and (b) negative binomial with quadratic variance
function and strong overdispersion parent models fitted to 1,000 simulated sam-
ples.
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Abstract: An approach for targeted bias reduction of parameters of interest
within a statistical model is proposed, and applied to the setting of generalised
additive models, in which only parameters corresponding to linear terms are
of immediate interest for bias reduction. The approach means the estimation
method for the functional parameters can remain the same, allowing a more
natural and efficient process than reducing the bias of all parameters. The method
is tested for the case of a binomial generalised additive model via a simulation
study.
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1 Targeted bias reduction

1.1 Adjusted score equations

Within statistical research, it is often the case that an estimator of an
unknown parameter θ = (θ1, . . . , θp)

T is biased, that is the expected value
of the estimator is not equal to the parameter. As a result, bias reduction
of estimators, with the aim of improving inference from statistical models,
has attracted a lot of research, and there is a range of methods developed
for this purpose, such as those reviewed in Kosmidis (2014). An example
of a typically biased estimator is the commonly used maximum likelihood
estimator, which under regularity conditions from Cox and Hinkley (1974),
has bias with asymptotic order O(n−1). As n→∞, the bias vanishes, but
for finite samples the bias may be substantial. The maximum likelihood
estimator is found by solving the score equations

S(θ) = ∇θℓ(θ) = 0p

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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where ℓ(θ) is the log-likelihood for θ, as long as the observed informa-
tion matrix I(θ) = −∇θ∇T

θ ℓ(θ) is positive definite when computed at the

maximum likelihood estimator θ̂. Firth (1993) showed that an alternative
estimator of θ with O(n−2) bias may be found by solving the adjusted score
equations

S∗(θ) = S(θ) +A(θ) = 0p. (1)

The adjustments A(θ) may take various forms, and are Op(1) as n → ∞.
One specific form given in Firth (1993) gives the t-th element of the vector
of adjustments as

At(θ) =
1

2
trace[F (θ)−1{Pt(θ) +Qt(θ)}]

where Pt(θ) = Eθ{S(θ)S(θ)TSt(θ)} and Qt(θ) = −Eθ{I(θ)St(θ)}, with
F (θ) = Eθ{I(θ)} being the expected information matrix.

1.2 Targeted adjustments

Consider a model where the aim is to estimate a set of parameters θ =
(αT, βT)T, where α has dimension p1, and β has dimension p2 = p−p1. The
adjusted score equations for reduced bias estimates of θ can be decomposed
in to each set of parameters as

Sα(α̂, β̂) +Aα(α̂, β̂) = 0p1 and Sβ(α̂, β̂) +Aβ(α̂, β̂) = 0p2 ,

where 0ν is a vector of ν zeros. Suppose further that only the α parameters
are of interest, and we wish to compute reduced bias estimates of α. One
way to do this is to solve the adjusted score equations (1), but an alternative
is to only adjust the score equations Sα. By letting Ā denote these targeted
adjustments, and following a similar derivation to Firth (1993), we obtain

Āα = Aα + {Iαα}−1IαβAβ , (2)

while Sβ is not adjusted, that is Āβ = 0. We denote Iαα and Iαβ to be the
(α, α) and (α, β) blocks of I(θ)−1 respectively.

2 Generalised additive models

Following Wood (2017), a generalised additive model (GAM) takes the form

g(µi) = ZT

i α+
∑
j

fj(xji)

for i ∈ {1, . . . , n}. We have that µi = E(Yi), where Yi is a response vari-
able with an exponential family distribution, Yi ∼ EF (µi, ϕ). The fj are
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smooth functions, each typically represented by a corresponding basis ex-
pansion fj(x) =

∑k
m=1 b

j
m(x)βjm, where bjm(x) is the mth basis function

for function fj(x). Therefore, we can construct a design matrix Xj for each

fj such that Xj
im = bjm(xi). After applying identifiability constraints, this

leads to an overall design matrix X̃ for the functional part of the model,
and a design matrix X = (Z|X̃) for the whole model, giving a generalised
linear model (GLM) structure

g(µi) = Xiθ, Yi ∼ EF (µi, ϕ),

where θ = (αT, βT)T. Maximising the likelihood ℓ(θ) for this model would
typically lead to overfitting, so parameter estimation is by maximising a
penalised likelihood

ℓp(θ) = ℓ(θ)− 1

2ϕ
βTSβ,

where S =
∑
j λjSj . Sj is a penalty matrix for function fj , and λj

is a smoothing parameter to control the trade off between how well
fj fits the data, and its smoothness. In practice, this maximisation is
achieved through a penalised iteratively reweighted least squares (PIRLS)
procedure, illustrated for example in Wood (2017).

Suppose that we wish to compute reduced bias estimates of θ. The α pa-
rameters are linear regression parameters and so reducing their bias is of
interest. However, to directly reduce the bias of the β parameters is not
of immediate interest, as they are representations of functions rather than
individually interpretable parameters. Hence, we can apply the targeted
adjustments of Section 1 in this setting. If we take ℓp(θ) as our target
to be maximised, we can apply the targeted adjustments by constructing
adjustments (2), using the corresponding penalised score function ∇θℓp(θ).

3 A small simulation study

A binomial GAM is considered. In this setting, Yi ∼ Binomial(mi, ψi), and
the penalised score is

S(θ) =

[
∇αℓ(θ)
∇βℓ(θ)

]
=

[
ZT(y − µ)

X̃T(y − µ)− Sβ

]
, (3)

where µi = miψi, X = (Z|X̃) is the design matrix for the whole model and
S is the overall penalty matrix. We consider the following model:

log

(
ψi

1− ψi

)
= α0 + x1iα1 + 2 sin(πx2i),
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where x1 and x2 are independent Unif(0, 1) random variables. We perform
1000 repetitions of estimating parameters by solving the original score equa-
tions (3), and the targeted adjusted score equations for n ∈ {100, 200} and
λ ∈ {0.1, 0.2, 0.8, 1.6, 3.2}, using the nleqslv package in R. Applying the
full bias reducing adjustments required significantly more computing time
than for the targeted adjustments, due to slower convergence of the opti-
misation algorithm, while providing similar results. Therefore, we omit the
full adjustments here.
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FIGURE 1. Estimated biases and mean squared errors when solving the original
score equations, and score equations with targeted adjustments.

Observe that we have some evidence of bias reduction, particularly at
smaller values of λ. We observe a small increase in mean squared error,
and difficulty in achieving convergence for smaller n, where bias is expected
to be higher. This is likely due to the numerical scheme used, therefore
we are developing an iterative scheme incorporating the PIRLS approach,
with the aim of increased stability, and examining the theoretical proper-
ties of the targeted bias reduction approach, in terms of the magnitude of
the smoothing parameter λ. Overall, the targeted bias reduction approach
shows promise and work is ongoing to develop it.
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1 Overview

Mixed models are widely used for modelling longitudinal or clustered data
by capturing within-cluster correlations using cluster-specific random ef-
fects. While usually fitted based on the penalised likelihood, model-based
boosting (Bühlmann and Hothorn, 2007) offers a fast and intuitive alterna-
tive which additionally enables variable selection and stable performance in
high dimensional data. For this purpose the well-known R-package mboost
was equipped with a random effects base-learner in order to estimate gen-
eralised additive mixed models within the framework of component-wise
gradient boosting (Kneib et al., 2009). However, this approach tends to
produce biased estimates in the presence of cluster-constant covariates and
in addition lacks any parameter estimation for the random components.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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In this work we embed previous efforts to overcome these issues (Gries-
bach et al., 2021) into the mboost framework (Hothorn et al., 2022) and
therefore gain a powerful boosting approach which enables well performing
estimation of flexible mixed models based on gradient boosting.

2 Methodology

2.1 Generalised Additive Mixed Models

Generalised additive mixed models (GAMMs) allow the effect of each co-
variate xr, with r = 1, . . . , p, to be modelled by a possibly non-linear
function fr(·). Therefore, the predictor η is defined as

ηij = f1(xij1) + · · ·+ fp(xijp) + z⊤ijγi,

with clusters i = 1, . . . , n and single observations j = 1, . . . , ni. The influ-
ence of covariates zij in the random structure is assumed to be linear with
random effects γi ∼ N⊗q(0,Q), where covariance Q(ϑ) depends on the
unknown parameter vector ϑ. The distribution of the response variable y
determines the necessary response function h(·) that achieves E(y) = h(η).
Resulting from the Laplace approximation the models’ penalised likelihood
has the following form

ℓpen(β, γ, ϑ) =

n∑
i=1

log (f(yi|β, γ, ϑ))− 1

2

n∑
i=1

γ⊤i Q
−1γi. (1)

2.2 mermboost Algorithm

The mermboost approach essentially resembles an extension of conventional
gradient boosting with nuisance parameters where now the complete ran-
dom structure including random effects γ as well as variance components
Q are treated as nuisance parameters and updated accordingly after every
fixed effects boosting cycle. Algorithm 1 displays the mermboost procedure
which is essentially a wrapper around mboost applying a novel family object
with an enhanced nuisance component.
In the first step a) of each iteration a regular component-wise boosting up-
date for the fixed effects is performed. Afterwards, step b) obtains updates
for the random structure by maximizing the corresponding penalised likeli-
hood (1) with the current fit computed in step a) as an offset. The updates
of the random effects γ in step b) are treated with a correction mechanism
as suggested by Griesbach et al. (2021) to prevent bias in their estimation,
which is present in mboost. This separation of a component-wise procedure
for fixed effects and an iterative update of the random effects eliminates
competition between them and therefore, ensures an adjustment of cluster
specific effects in every boosting iteration.
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As this algorithm uses mboost the extensive variety of distribution families
and base-learners of mboost becomes immediately available for mermboost
enabling a highly customisable estimation approach to a broad class of
mixed models via gradient boosting.

Algorithm 1 (mermboost)

� Initialize predictor η̂[0] and specify base-learners bl1(·), . . . , blp(·).
Choose step length ν and number of total iterations mstop.

� for m = 1 to mstop do

a) fixed effects: Compute the negative gradient u[m] of the current

model, determine the best performing base-learner fit b̂lr∗ correspond-
ing to u[m] and update

η̂[m] = η̂[m−1] + νb̂lr∗ .

b) random structure: Receive current estimates γ̂[m] and Q̂[m] by
maximizing the penalised likelihood (1) with η̂[m] as offset.

end for

� Determine the best performing stopping iteration m∗ based on a
pre-chosen criteria (e.g. cross-validation).

Return model fit η̂[m∗] as well as γ̂[m∗] and Q̂[m∗].

3 Simulations

To evaluate the performance of the new algorithm mermboost in compari-
son to usual mboost estimations with regard to parameter estimation and
variable selection properties several simulations got conducted. Table 1
demonstrates exemplary results of a random intercept case, so that Q = τ2.
Since mboost does not give an actual estimate for Q and therefore for τ ,
the standard deviation of the random effects is used as a proxy, which is
emphasised by italic values.
Simulations with a Poisson distributed response reveal strongly improved
performance of mermboost compared to mboost regarding accuracy of es-
timates, i.e. the mean squared error mseβ of fixed linear coefficients β as
well as the mean squared error mseτ of the random component τ .
Even though a significant shrinkage is observed for all parameter estimates
with a binomial distributed response mermboost still outperforms mboost
concerning mseβ . Contrarily, for the mean squared error of the random
component, mseτ , a decreased performance is indicated. Figure 1 illustrates
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TABLE 1. Simulation results (mseβ , mseτ and f.p.r.) for Poisson and binomial
data for the exemplary case of τ = 2 and varying dimensions p.

mboost mermboost

data p mseβ mseτ f.p.r. mseβ mseτ f.p.r.

Poisson 25 4.804 1.890 0.000 3.421 0.087 0.500
50 4.882 1.933 0.000 3.523 0.094 0.326
100 4.966 1.958 0.000 3.612 0.096 0.208

binomial 25 3.899 0.718 0.310 3.446 1.136 0.429
50 4.024 0.903 0.239 3.617 1.316 0.348
100 4.224 1.186 0.182 3.997 1.570 0.219

mermboost ’s significant shrinkage as well as mboost ’s similar estimates for
different values of τ . The latter is due to the competition between random
and fixed effects in mboost and estimates strongly depend on the number
of times the random effects’ base-learner gets picked. Hence, for a large τ
(e.g. τ = 3) mermboost actually outperforms mboost concerning mseτ .
However, correlations between the true random effects and the estimated
ones are higher for mermboost compared to mboost ’s estimates for all cases.
This is a result from erasing the structural bias in cluster constant fixed
effects, which mboost tries to correct with the random effects. Nevertheless,
large shrinkage is a drawback of this method, so that it will be looked into
a restricted maximum likelihood approach for the random components as
Tutz and Groll (2010) achieved substantially improved metrics using it. As
a result of the mentioned bias, the cross-validation of mboost leads to much
smaller false positive rates (f.p.r.) than mermboost for both distributions.

FIGURE 1. Estimations of τ = {1, 2, 3} by both boosting packages for binomial
data (p = 50 is held constant here).
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FIGURE 2. Coefficient paths of both boosting alternatives for the data example.

4 Application

We consider clustered data of 20 patients with 3656 observations overall
where patients’ brain activity got measured while alternating between the
states of silence and a played sound. Previous neurophysiological research
suggests that alpha and gamma waves show reactions to conscious percep-
tion e.g. during a played sound. By using the source points of the brain
and their spatial dependence 4813 covariates of brain waves are candidates
to explain whether a sound was played to a patient or not. This high di-
mensional clustered logit model is fitted by the old and novel approach of
mboost. In contrast to mermboost the old mboost approach does not detect
any random effects. Figure 2 demonstrates that this detection leads to a
drastic influence on the optimal number of iterations (746 vs. 48, vertical
red line) and consequently, on the number of picked covariates, which is
34 vs. 4. Table 2 demonstrates magnitudes of coefficients differ much from
another but the four brain regions chosen by mermboost are also picked
by mboost. The signs of the coefficients confirm the expectations of previ-
ous research in the way that alpha activity is high when the brain awaits
cognitive perception and gamma activity can be observed during cognitive
processes. Still, spatial information in form of coordinates are are yet to be
received and might increase the model’s performance significantly.

5 Summary

The new proposed mermboost algorithm incorporates a correction step as
suggested by Griesbach et al. (2021) and a separation of estimating fixed
and random effects. The latter ensures a removal of competition between
fixed and random effects. This might be seen as a drawback since now
the random effects are pre-specified instead of being picked by a statistical
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TABLE 2. Picked brain regions and their coefficents estimated by both boosting
approaches. (Direction in the name indicates the site of the brain. Colon indicates
an interaction of neighboured regions.)

brain region mboost mermboost

122right-alpha -0.291 -0.078
9left-gamma 0.210 0.131
117right-gamma:123right-gamma 0.060 0.021
149right-gamma:150right-gamma 0.281 0.255

learning algorithm. However, both adjustments result not only in unbiased
estimates for cluster constant fixed effects but also in unbiased random ef-
fects with a reasonable estimate of their covariance. While simulated data
with a Poisson distributed response give convincing results, for binomial
data a large shrinkage is observed especially in the random structure. A re-
stricted maximum likelihood approach might help to overcome this shrink-
age as Tutz and Groll (2010) observed much better results by this within
a similar framework. Furthermore, it might be of interest to look into sce-
narios with almost cluster constant covariates, where a similar bias would
be expected but is currently not accounted for.
Currently, mermboost is available as an add-on R-package for mboost but
to enhance its usability it is planned to integrate it in mboost as an own
family.
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1 Introduction

Interval censoring is typically encountered in the analysis of times to a
silent event. In these cases the time that the event occurs, for instance,
the moment of an infection with a certain virus, cannot be observed ex-
actly. Methods to analyse such data have been extensively studied; see, e.g.,
Gómez et al. (2009). However, scientific literature on regression models with
an interval-censored covariate is scarce because times to an event of inter-
est are, most often, rather a study’s response than one of the explanatory
variables.
Gómez et al. (2003) presented a linear regression model with an interval-
censored covariate in the context of a clinical trial for HIV-infected persons
and proposed an Expectation-Maximization (EM)-type algorithm, the so-
called GEL (Gómez–Espinal–Lagakos) algorithm, to jointly estimate the
model parameters and the marginal distribution of the interval-censored
covariate. This algorithm was implemented in R by Langohr and Gómez
(2014). More recently, Morrison et al. (2022) adapted the GEL technique

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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to accommodate left-truncated interval-censored data, and Gómez et al.
(2022) applied the algorithm to generalized linear models.
In this work, we present the GEL algorithm for generalized linear models
and illustrate the method with a gamma regression model applied to data
from a metabolomic study. In this study, one of the explanatory variable
is the sum of compound concentrations that cannot be quantified exactly
under the quantification limits (LoQ) or detection limits (LoD) of its com-
ponents. Residuals for such models will be sketched and are, presently,
under study.

2 Generalized linear models with an interval-censored
covariate

2.1 Model expression and parameter estimation

The generalized linear model with an interval-censored covariate can be
expressed as follows:

µ = E(Y |X,Z) = g−1(α+ β′ ·X + γ · Z), (1)

where Y is a continuous or discrete response variable that belongs to the
k-parameter exponential family, g is the link function, X is a p-dimensional
vector of covariates, and Z is an interval-censored variable with distribution
function given by FZ . The observed intervals of Z are denoted by [Zl, Zr].
Typical examples for the distribution of Y are the binomial, Poisson, and
gamma distributions leading to the logistic, Poisson, and gamma regression
models, respectively.
Given an independent sample (Yi,Xi, Zli , Zri), i = 1, . . . , n, and assuming
noninformative censoring (Oller et al., 2004), the observed intervals can be
treated as fixed in advanced and the likelihood is then proportional to

L(θ, FZ) =

n∏
i=1

∫ zri

zli

fY |X,Z(yi|xi, z;θ) dFZ(z),

where fY |X,Z(y|x, z;θ) denotes either the conditional density or the proba-
bility function of Y given X and Z depending on whether Y is a continuous
or discrete random variable. The vector θ = (α,β′, γ, τ ′)′ contains the pa-
rameters of model (1) and τ stands for the vector of extra parameters of
the exponential family.
For the sake of the maximization of the corresponding log-likelihood func-
tion, we assume that Z is discrete with support S = {s1, . . . , sm} and cor-
responding probability masses w = {w1, . . . , wm}. Hence, the expression of
the log-likelihood function is given by

l(θ,w) =

n∑
i=1

log
( m∑
j=1

ηijfY |X,Z(yi|xi, sj ,θ)wj

)
, (2)
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where ηij = 1{sj ∈ [zli , zri ]} indicates whether the support point sj is

included in the observed interval of the ith individual or not.
The GEL algorithm for the estimation of α,β′, γ, and τ ′ in presence of
the nuisance parameter w consists of the following two-step algorithm and
both steps are alternated until joint convergence is achieved:

1. Given an estimate of θ, ŵ is obtained by solving the self-consistent
equations:

wj =
1

n

n∑
i=1

ηijfY |X,Z(yi | xi, sj ; θ̂)wj∑m
k=1 ηikfY |X,Z(yi | xi, sj ; θ̂)wk

, j = 1, . . . ,m.

2. Given an estimate of w, the log-likelihood function (2) is maximized
with respect to the regression parameters α,β′, γ, and τ ′.

2.2 Gamma regression model

Using the log as link function, the expression of the gamma regression
model is

log(µ) = log(E(Y |X, Z)) = α+ β′ ·X + γ · Z. (3)

In this case, the conditional density function of Y given X and Z to be
plugged into the log-likelihood function (2) is given by

fY |X,Z(y|x, z;θ) =

νν

(eα+β′·X+γ·Z)νΓ(ν)
exp

{
− ν

eα+β′·X+γ·Z · y + (ν − 1) · log(y)
}
,

where ν is the shape parameter of the gamma distribution. The estimation
of the parameters by means of the GEL algorithm has been implemented
by the authors in R (https://github.com/klongear/ICbook).
An important aspect of our current research are goodness-of-fit techniques
for this model. The idea is to adapt the model’s deviance and the Pearson’s
chi-squared statistic to the presence of an interval-censored covariate. Both
statistics depend on the values of the model’s covariates and we propose to
impute the unknown values of Z by the respective expected means given the
observed intervals under the estimated Turnbull distribution F̂Z (Gómez
et al., 2022).

3 Application to the data of a metabolomic study

The gamma regression model (3) is used to model the glucose level of the
participants of the PREDIMED-Plus trial, a multicenter, randomized, pri-
mary prevention field trial of cardiovascular disease in an older population
with metabolic syndrome (Marhuenda-Muñoz et al., 2019).
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The explanatory variables of interest is the sum of the α-carotenoids. Since
none of the carotenoid compounds, Cj , j = m, can be quantified exactly
under its quantification limit (LoQ), and is not even detectable under its
detection limit (LoD), the observed concentrations are either left-censored
[0, LoDj), interval-censored [LoDj , LoQj), or exactly determined [Cj , Cj ];
see Figure 1 for an illustration. As a consequence, the sum over the com-
pounds, Z =

∑m
j=1, is an interval-censored covariate. Notice that different

from most applications with interval-censored data, here, Z is not a time-
to-event variable.

Compound (S)0 LoD LoQ

0 < s < LoD LoD < s < LoQ s

FIGURE 1. Possible observations of compound concentrations: a concentration
might be lower than the limit of detection (LoD), lie between the LoD and the
limit of quantification (LoQ), or be quantified exactly.

The gamma regression model is adjusted for age and energy intake and
the estimated parameter estimate obtained with the GEL algorithm is

−0.0026 mg/dl
µmol/L with a standard error of 0.0022 mg/dl

µmol/L . Hence, based on

the data at hand, it cannot be claimed that glucose level depends on the
sum of the α-carotenoids.
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1 Introduction

In this paper, we extend the Tail Index Regression (Wang & Tsai, 2009)
to a Bayesian regularisation framework that characterises the extreme be-
haviour of a response variable that follows a conditional Pareto-type tail
specification.

From a Bayesian perspective, each regression coefficient follows an in-
dependent and identically distributed shrinkage prior that behaves equiva-
lently to the ℓp-type penalty regularisation. This aligns with the structure
of the heavy-tailed distribution where certain covariates are determined as
key factors of the extremeness. As a result, our approach entails a regular-
isation on a fully semiparametric framework by concentrating on learning
about the regression coefficients that achieve a relatively sparse structure.
Our contribution has important implications, particularly to the research in
modelling extreme wildfires—such as the devastating 2017 Portugal wildfire
(Turco et al., 2019)—and on the identification of their underlying drivers.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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2 Bayesian Regularisation for Tail Index Regression

Our starting point for modelling is the following conditional Pareto-type
tail specification that stems from Beirlant et al. (2004, Ch. 9):

P (Y > y |X = x) ≡ 1− F (y | x) = y−α(x)L(y | x). (1)

Here, α(x) = exp(xTβ), is a covariate-adjusted tail index, with the obser-
vation x = (x1, . . . , xp)

T and regression coefficients β = (β1, . . . , βp)
T ; in

addition, L(y | x) is a covariate-adjusted slowly varying function, that is,
L(yt | x)/L(y | x) → 1, as y → ∞, for all t > 0. The specification in (1),
allows for the heavy tail behaviour—as captured by the tail index—to de-
pend on covariates. We follow Wang & Tsai (2009) and consider the Hall’s
(1982) class of covariate-adjusted slowly-varying functions given by,

L(y | x) = c0(x) + c1(x)y−θ(x) +O(yθ(x)), (2)

where c0(x), c1(x) and θ(x) > 0. Hence, L(y | x) → c0(x) and ∂L(y |
x)/∂y → 0, as y →∞.

To regularise the above described tail index regression model, we resort to
shrinkage priors. Given the space constraint we will focus on the Laplace
prior, but other variants of the approach can be readily constructed by
considering other shrinkage penalties, as illustrated in Fig. 1.

FIGURE 1. Comparison of the geometry of a unit ball induced by Laplace (red)
and Normal ( blue) priors depicting ℓ1 and ℓ2 penalty regularisation, respectively.

Concretely, in terms of the Bayesian Lasso (Park and Casella, 2008)
version of our approach for (1), we learn about β from a random sam-
ple {(xi, yi)}ni=1 ∼ F (x, y). In Bayesian context, the posterior mode from
a Laplace prior corresponds to maximising the constraints of the objec-
tive function with a ℓ1 penalty. Thus, the sparsity-inducing regularisation
shrinks the coefficients of less influential variables and results in the sparse
structure distribution. Then, the resulting posterior density is,

p(β | {(xi, yi)}ni=1) ∝ exp

{
1/λ

p∑
j=1

|βj |

}
L(β) (3)
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where L is the approximated likelihood that follows from (2),

L(β) ≈
n∏
i=1

f(yi | xi) ≈
n∏
i=1

α(xi)(yi/u)−α(xi)y−1
i , (4)

for some large threshold u, with yi > u, and where f = dF/dy. The priors
for the regression parameters, β of tail index, α(x) are then defined as

βj | λ ∼ Laplace(λ), λ ∼ Gamma(a, b), (5)

with a, b > 0, where an uninformative Gamma prior was chosen as the
hyperprior for λ. Since the posterior has no closed-form expression, we
resort to Markov Chain Monte Carlo (MCMC) methods for sampling.

3 Simulation Study

To assess the performance of the proposed method, we consider:
Scenario A: Conditional Pareto, i.e., L(y|x) ∝ 1, with

β = c(0.2, 0, 0.8, 0, 0,−0.1, 0, 0, 0,−0.4)T .

Scenario B: Conditional Burr, i.e., L(y|x) ∝ (y−c(x)+1)−2, where α(x) =
c(x) with

β = c(0.1, 0.5, 0, 0,−0.9,−0.5, 0, 0.4, 0, 0)T .

Scenario C: Conditional F, i.e., L(y|x) ∝ (yk1/2−1(k1 +
k2(x)y)−(k1+k2(x))2), where α(x) = k2(x)/2 with

β = c(0, 0,−0.8, 0.2, 0.9, 0, 0, 0.4, 0, 0)T .

We retrieved the 90% quantile of 5000 random samples from (1) and re-
peated the study 250 times for Monte Carlo simulation. An uninformative
Gamma prior, Γ(0.1, 0.1) was employed, and in terms of MCMC we took
10,000 burn-in iterations and collected 20,000 samples. From Fig. 2 (top),
it can be observed that each posterior mean approximates the true value
well, hence suggesting a good performance of our method.

4 Real Data Application

We illustrate the proposed method on data of Instituto Dom Luiz that
consists the daily burn area of forest fires between 1980 and 2019 in Por-
tugal. We examine the following potential drivers for the same period of
time: southerly flow (SF), westerly flow (WF), total flow (F), southerly
shear vorticity (ZS), westerly shear vorticity (ZW), total shear vorticity
(Z), and direction of flow (DF). We filtered 731 observations out of 14,609
and standardised their covariates. We used a Normal prior, N(0, 1002) for
the intercepts and the same setup as in Section 3, Fig. 2 (bottom left)
suggests WF, DF and SF are the drivers of the extreme forest fires. Fig. 2
(bottom right) depicts the corresponding randomised quantile residuals
against the theoretical standard normal quantiles and it evidences a good
fit.
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FIGURE 2. Results from simulation study (Top) and data illustration (Bottom).
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Abstract: Choosing the most important variables in supervised and unsuper-
vised learning is a difficult task, especially when dealing with high-dimensional
data where the number of variables far exceeds the number of observations. In
this study, we focus on two popular multivariate statistical methods - princi-
pal component analysis (PCA) and partial least squares (PLS) - both of which
are linear dimensionality reduction techniques used in a variety of fields such as
genomics, biology, environmental science, and engineering. Both PCA and PLS
generate new variables, known as principal components, that are combinations
of the original variables. However, interpreting these components can be chal-
lenging when working with large numbers of variables. To address this issue, we
propose a method that incorporates the best subset selection approach into the
PCA and PLS frameworks using a continuous optimization algorithm. Our em-
pirical results demonstrate the effectiveness of our method in identifying the most
relevant variables. We illustrate the use of our algorithm on two real datasets -
one analyzed using PCA and the other using PLS.

Keywords: Best Subset Selection; Continuous Optimization; Partial Least
square; Principal Component; Sparsity

1 Introduction

Identifying the most relevant variables is a difficult task, particularly in high
dimensional contexts where there are typically many more variables than

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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observations. Analyzing each variable individually can be time-consuming,
and presenting results using graphs or numerical measures may not provide
sufficient insight as either too many features are visualized, or the summary
information may be inconclusive. To address this, multivariate statistical
methods such as principal component analysis (PCA) and partial least
squares (PLS) are commonly used. These methods are well-established lin-
ear dimensionality reduction techniques that are particularly useful for ana-
lyzing data with a large number of variables. By constructing new variables
(known as principal components) that are linear combinations of the origi-
nal variables, PCA and PLS can help identify the most important variables
and simplify the analysis of complex datasets.
This paper proposes a new method for identifying components that are
based on the most relevant variables. Specifically, we approach the chal-
lenge of defining sparse components as a ”best subset selection” (BSS)
problem, where the objective is to find the best subset of k variables for
constructing the components. BSS has been extensively studied in the con-
text of linear regression, with existing methods offering solutions beyond
exhaustive search, such as the Furnival Wilson algorithm, which becomes
impractical when the number of variables exceeds 30. To address this, we
propose an approach for BSS in PCA and PLS models that is based on
a continuous optimization algorithm recently developed for BSS in linear
regression.
Our approach frames BSS for PCA and PLS as continuous optimization
algorithms that can leverage standard continuous optimization techniques
such as gradient descent to explore a large set of subsets.
In this short paper we only present the problem of best subset selection
(BSS) for the PLS model with univariate response, which is the simpler op-
timization problem to solve. This particular PLS model is known as PLS1.
During our oral presentation, we will present BSS for the multivariate case
of PLS, called PLS2. We will further show that the BSS for PCA can be
easily derived from the BSS for PLS2. A simulation study will be also pre-
sented during our talk where we highlight the ability of our algorithms
to recover best subsets in PCA and PLS models. Finally, we will present
applications of our algorithm for two different real datasets.

2 Best Subset Selection for PLS with Univariate
Response

The first component pair for the PLS model for the data matrices X of
dimension n× p and univariate response y ∈ ℜn is obtained by solving,

max
u∈ℜp, ∥u∥=1

cov(Xu,y) = max
u∈ℜp, ∥u∥=1

⟨Xu, y⟩
n

. (1)

where cov(·, ·) is the sampling covariance operator.
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We now consider the BSS framework for constructing the first component
score. Finding the optimal solution u∗ ∈ ℜp of (1) is given by

u∗ =
X⊤y

∥X⊤y∥
. (2)

Now suppose we want to introduce sparsity, in the sense that the new
optimization problem is

max
u[s]∈ℜk, ∥u[s]∥=1

⟨X[s]u[s], y⟩
n

, subject to s ∈ {0, 1}p, |s| ≤ k, (3)

where X[s] is the matrix constructed from X by removing all its columns
with indices j where sj = 0, k is the sparsity parameter that represents
the subset size, and |s| denotes the number of ones in the binary vector s.
Observe that for any fixed binary vector s, the optimal solution is u∗

[s] =

X⊤
[s]y/

(
∥X⊤

[s]y∥
)
.

Thus, the optimization problem (3) can be expressed as

max
s∈{0,1}p

⟨X[s]u
∗
[s], y⟩
n

, subject to |s| ≤ k,

Since,

⟨X[s]u
∗
[s], y⟩ =

(
u∗
[s]

)⊤
X⊤

[s]y =
∥X⊤

[s]y∥
2

∥X⊤
[s]y∥

= ∥X⊤
[s]y∥,

we can express (3) as

min
s∈{0,1}p

[
−
∥X⊤

[s]y∥
n

]
, subject to |s| ≤ k. (4)

This problem defines the best subset selection for PLS1. However, solving
this problem is NP-hard, and hence, we consider, by exploiting the same
idea as in Moka et al. (2022), a relaxation of (4) given by

min
t∈[0,1]p

[
−∥X

⊤
t y∥
n

]
, subject to

p∑
j=1

tj ≤ k, (5)

where t = (t1, . . . , tp)
⊤, with each tj ∈ [0, 1], and Xt is obtained from X by

multiplying its j-th column with tj for every j = 1, . . . , p. Since minimizing
−∥X⊤

t y∥ is equivalent to minimizing −∥X⊤
t y∥2, to simplify the gradient

expression later, we rewrite (5) as

min
t∈[0,1]p

[
−∥X

⊤
t y∥2

n2

]
, subject to

p∑
j=1

tj ≤ k. (6)
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Note that the optimization problem in (4) is defined using X[s] constructed
by removing columns from the design matrix X (and hence X[s] and X are
of different sizes) while Xt in optimization problem in (5) is constructed
by multiplying the j-th column of X by tj for every j. Thus, both Xt

and X are of the same size. This construction allows us to define our new
estimator of the loading vector ut for all t ∈ [0, 1]p while guaranteeing that

∥X⊤
t y∥ = ∥X⊤

[s]y∥, for t = s,

at the corner points s of the hypercube [0, 1]p. This construction also guar-

antees that the new objective function −∥X⊤
t y∥2

n2 is smooth over the hyper-
cube as illustrated in Figure 1.

Finally, instead of solving (6), we consider fPLS1
λ (t) = −∥X⊤

t y∥2

n2 +λ
∑p
j=1 tj ,

and solve
min

t∈[0,1]p
fPLS1
λ (t), (7)

using a continuous optimization method, such as basic gradient descent or
Adam (as shown in the example of Figure 1). To execute such a gradient
descent algorithm, we use the gradient expression given by

∇fPLS1
λ (t) = λI − 2

n2
(
t⊙X⊤y ⊙X⊤y

)
, (8)

where I is the identity matrix and ⊙ is the element-wise product operator.
Exploiting the continuity of the new objective function enables gradient
descent algorithms to explore a huge space of models while converging in a
few iterations to identify the best subset. By increasing the value of λ, we
can increase the sparsity of the solution of the optimization problem (5),
because the penalty λ

∑p
j=1 tj encourages sparsity in t (see Figure 1).
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FIGURE 1. Illustration of the workings of our continuous optimization method
using basic gradient descent for an example data with p = 2. Plot (a) shows the
objective function of the PLS model with univariate response at binary points
s ∈ {0, 1}2. Observe that the best subsets correspond to k = 0, k = 1, and k = 2
are (1, 1)⊤, (0, 1)⊤, and (0, 0)⊤, respectively. Plots (b) - (d) show the objective
function of our optimization method (7) for different values of the parameter λ.
In each of these three plots, the curve (in yellow) shows the execution of basic
gradient descent algorithm that, starting at the initial point tinit = (0.5, 0.5)⊤,
converges towards the best subsets of sizes 0, 1, and 2.
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Abstract: When studying age-at-menopause of a particular generation cohort
of women the approach where women without an observed menopause are deleted
from the study is not advisable because they might convey different informations
for the analysis namely about the so called period effect. Generally, the deleted
are the youngest who have not yet reached menopause.
The context is a Portuguese breast cancer screening programme in the period
1990–2010 where a late menopause is considered a risk factor. Our aim is to
recover missing menopause ages by comparing methods for handling missing (or
incomplete) data.
Two imputation approaches are considered: (i) multiple imputation based on a
truncated distribution but ignoring the mechanism of missingness; (ii) a bivariate
copula-based imputation that simultaneously handles the age-at-menopause and
the missing mechanism.
There are contradictory results in current research about whether age-at-me-
nopause is increasing or decreasing in Western countries. We show that both
imputation methods unveiled an increasing trend of age at menopause when
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viewed as a function of the birth year for the youngest generation. This trend is
hidden if we model only women with an observed age-at-menopause.

Keywords: menopause; incomplete data; copula regression; GJRM; gamlss.

1 Introduction

Age-at-menopause has an important role in the research about risk fac-
tors for breast cancer. However, it is a variable prone to incompleteness,
because the time when women participate in a breast cancer screening pro-
gram overlaps the time when women are most likely to enter menopause.
Therefore, the younger women of the generation cohort under analysis tend
to have missing information on age-at-menopause. Not recovering those val-
ues can lead to wrong conclusions because the parameters estimates for the
most recent years will tend to be dominated by these young women.
The question of whether missing values of a variable are related to the
underlying value itself allows for classifying the missing data mechanism
into three categories (Rubin 1976): missing completely at random (MCAR),
missing at random (MAR) and missing not at random (MNAR).
We frame the issue of imputing age-at-menopause as a missing data prob-
lem since we consider this measure as a covariate in a potential subsequent
risk cancer analysis. We therefore ask the same question as in a classical
missing value setting: Is the missing mechanism informative or not? Note
that recovering the values for age-at-menopause as the dependent variable
could also be treated as a censoring or prediction problem but is not the
focus of this work.
To test how different strategies to impute missing ages-at-menopause for
the youngest women influence the analysis of time- and spatial-trends of
that variable, we will analyse the case of a breast cancer screening program
in central Portugal. Exploratory analyses show the presence of a geograph-
ical pattern of the missing data and a close relation with a woman’s year of
birth (a.k.a. period effect), implying, at least, a violation of the MAR as-
sumption. Additionally, there is a high percentage of missing values in the
variable of interest (23.6%), which precludes an analysis by simply deleting
those individuals.
To achieve the goals defined above, we will consider two statistical mod-
elling approaches with the aid of two R packages, namely GJRM – Gener-
alised Joint Regression Modelling (Marra and Radice, 2017) and gamlss

– Generalised Additive Models for Location, Scale and Shape (Rigby and
Stasinopoulos, 2005). The GJRM package allows us to deal simultaneously
with two response variables while their specific marginal distributions are
conveniently expressed in a joint manner by means of a copula function
that binds them together. In this way, we will be able to define a joint dis-
tribution for both the process that governs the probability that a woman
has not yet reached menopause and for the age-at-menopause itself. The
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FIGURE 1. Birth year (flexible) effect if only considering women with an observed
menopause (left panel). Birth year (flexible) effect after the missing menopause
ages have been replaced with the imputations via a truncated Weibull distribution
at the screening age (right panel).

gamlss package adopts a method for the imputations which is very flexible
and allows imputations from truncated distributions.

2 Data

The dataset that we are working with has of 278 282 women between 1990
and 2010. At the age of 45, all women in each of the 78 municipalities in
central Portugal are invited to have a free screening mammogram and ev-
ery two years thereafter until the age of 69. This region roughly represents
25% of the Portuguese population. At the time of the last screening, 65 765
women (23.6%) stated they had not yet reached menopause (missing infor-
mation). The variables included in the dataset are: (i) binary characteristics
provided by the variables pregnancy, breastfeeding and the use of oral
contraceptives; (ii) quantitative information carried by the continuous
variables are age at menopause, age at menarche, year of birth and
age at the last screening; (iii) demographic information given by the
municipality purchasing power index; and (iv) spatial information em-
bodied in neighbourhood structure of the municipality of residence.

2.1 Methodology

The primary goal of this work is to draw inferences about the distribution of
the age-at-menopause, Yi, i = 1, 2, . . . , n given a set of observed covariates,
vi, by considering the primary analysis model [Yi | vi]. The most popular
approach would be to estimate its parameters using only the observed Yi’s,
yet estimates from such an analysis would be less efficient than they would
be if we had observed Y for every individual. Recovering information via
an imputation technique, e.g. multiple imputation (MI), should allow to
retrieve some of the information about Y that is not available.
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We discuss two different approaches for dealing with missing menopause
ages. One considers the data as MNAR and therefore we jointly model
the missing data mechanism and the response variable of interest via a
bivariate copula. The other considers an MAR data structure and thus
only the statistical process of the age-at-menopause is modelled.
The imputations will be obtained by sampling from an approximation to
the posterior predictive distribution of the missing data given modelling
assumptions and the observed data,

f(Ymis | Yobs,vi) ≈
∫
f(Ymis | Φ,vi) f̃(Φ | Yobs,vi) dΦ, (1)

where Yobs represents the observed menopause ages and Ymis the unob-
served ones; f̃(Φ | Yobs,vi) is the approximated posterior distribution of
all the parameters combined in the vector Φ.

3 Results

An imputation procedure for the missing ages-at-menopause is required if
the study aims at analysing the trend of a variable in a setting that includes
a cohort of women where the majority has already reached menopause and
only a small part has not yet. This is always the case when we have a co-
hort whose age range includes the more likely age to reach the menopause.
In settings, where either all women have already reached menopause, or
neither woman is in menopause yet, there is no need to resort to any impu-
tation procedure. From a statistical point of view, the first situation only
requires the specification of an analysis model. The second situation can-
not be inferred because we do not have information to predict individual
menopause, unless we assume that they have the same characteristics as
the older cohorts but then we would not be able to study the temporal
trends across cohorts.
With a dataset similar to the one that we worked with, not imputing the
missing ages-at-menopause means that we will have to wait for all women
belonging to the youngest cohorts to reach menopause in order to be able
to assess the temporal trends of the menopause for that specific cohort
of women. When fulfilling a dataset with imputations made in a proper
way, we can model the temporal trends of the age-at-menopause immedi-
ately. This means that, in terms of public health, we will be studying the
phenomenon of menopause without delays. The naive approach of simply
delete the women without an observed menopause leads to biased results
(Figure 1 - Left panel).
Finally, we would like to emphasize that age-at-menopause is increasing in
the central region of Portugal as a function of the birth year (Figure 1 -
Right panel).
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Abstract: This paper discusses techniques for improving the ranking perfor-
mance of information retrieval models through text enhancement using GPT-3’s
Large Language Model (LLM). Our goal is to demonstrate how the relevance of
retrieved documents can be improved by ingesting and indexing better quality
corpus data in the Solr search engine. We describe the methodology used in our
research and present an analysis and evaluation of our test results. Our conclu-
sion is that using GPT-3 to generate higher quality documents can enhance the
relevance of retrieved documents in information retrieval models. This provides
another alternative for evaluating retrieval models using test collections made
available to the retrieval research community at large.

Keywords: GPT-3; Relevance; Non-Parametric Analysis; Information Retrieval
Models; Large Language Model

1 Introduction

In our previous work, Hasso, S., Matawi, K. (2022), we discussed how se-
mantically enriched query alternatives improve the score and rank of search
results in Information Retrieval Models. The improvement was statistically
analysed using TREC data and Solr full-text search platform, Apache Soft-
ware Foundation (2021). The scoring functions such as BM25 is generally
used to measure the improvement. Mean Average Precision (mAP) mea-
sure was used to compare different configurations of the search engine. We
used a scheme to transform a query into an alternative form, in addition to
its original form, and combined it with other factors, such as term boosting
and word embedding models, to produce different configurations as input
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tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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to the Solr search engine. The purpose of that research paper was to answer
the question of what factors influence the relevance of retrieved documents
and how to validate the differences statistically. In this paper we aim to
show how the relevance of a retrieved document can be improved if a bet-
ter quality corpus data is ingested and indexed by Solr search engine. We
will demonstrate how we used GPT-3, OpenAI (2021), to generate better
quality documents.
In section 2 we survey some of the related research and give some back-
ground information. In section 3, we briefly explain the scoring Model,
ranking, and the evaluation model. In section 4, we describe a method-
ology we used in this research and describe our experimental design. An
analysis and evaluation of the test results are discussed in section 5. We
provide summary in section 6.

2 Related Work

The TREC test collections and evaluation software are available to the re-
trieval research community at large, so organisations can evaluate their own
retrieval systems at any time, Harman, D. (2005). In TREC evaluation, sys-
tems are given a document set and a set of information needs called topics.
The model produces a ranked list of documents per topic where each list is
ordered by decreasing likelihood that the document matches the informa-
tion need. Not all documents are judged for each topic, collection builders
sample the collection so that a small fraction of the entire document set
is judged for a topic but (most of) the relevant documents are nonetheless
identified. The relevance judgment for each topic is provided in a file called
”qrels”, query relevance, that we use to evaluate the performance of any
retrieval model.

3 Evaluation Models

Let d be a document and q be a query. For each query term i, let fid be
the frequency of term i in document d. Let ni be the number of documents
containing term i, and let N be the total number of documents in the
corpus.

Sdq =

∑n
i=1 wi(k + 1)fid

fid + k(1− b+ b|d|/avgdl)
log(

N − ni + 0.5

(ni + 0.5
)

Where, S is the Score, k and b are tuning parameters, typically set to
k=1.2 and b=0.75 based on empirical studies, avgdl is the average docu-
ment length in the corpus, |d| is the length of document d, wi is a weighting
factor for term i, which is typically calculated using the inverse document
frequency (IDF) scheme:

wi = log((N − ni + 0.5)/(ni + 0.5))
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The BM25 formula, Jones, et al. (2000), calculates a score for each doc-
ument d based on the relevance of its content to the query q, taking into
account factors such as term frequency, document length, and term speci-
ficity.
Mean Average Precision mAP is a metric used to evaluate the effectiveness
of a ranking model, such as a search engine, in returning relevant results
for a given query. The mAP is calculated by averaging the precision of the
top k documents returned for a set of queries, where k is a fixed number.
The formula for calculating the mAP is:

mAP =
1

Q

Q∑
i=1

(
1

K

K∑
j=1

Pj)

where: Q is the total number of queries, K is the number of documents to
be considered for each query, Pj is the precision at position j in the ranked
list of documents for the ith query, defined as:

Pj = (number of relevant documents in top j)/j

The mAP metric provides an average measure of precision across all
queries, taking into account the rank of relevant documents in the result
list. A higher mAP value indicates a better ranking model, as it means
that more relevant documents are being returned at the top of the result
list for a given query.

4 Text Enhancement Technique and Experimental
Design

Just as we demonstrated in the Query expansion techniques, we also set out
to experiment and explore how a better quality text document improves
relevancy of the result sets returned by the model. ChatGPT is a large
language model developed by OpenAI, based on the GPT-3.5 architecture.
It is designed to understand and generate human-like text in response to
user input, OpenAI (2021). Its generative human-like text capability was a
driving force for us to test the responses obtained when we submitted the
queries we used to test the performance of the retrieval model implemented
by Solr search application. So, the process follows these steps:

1. select all the queries from the TREC AVI collection

2. submit each query to chatGPT and obtain a response

3. process all the collected responses as individual documents and index
them via Solr search application
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FIGURE 1. Performance of Retrieval Model with and without GPT-3 generated
documents

4. run the test harness we developed from our previous work, Hasso, S.,
Matawie, K. (2022), to generate trec-metrics. During retrieval, Solr
uses specific IR model for ranking.

5. analyse the results

Our assumption is that if chatGPT-3 (this is the user interface to GPT-3)
language model is giving us a reasonably good response based on its vast
knowledge base, those responses would be good and relevant documents
when thrown in the mix of the remaining TREC AVI test collection and
subjected to the same queries in our Solr-based search application. To test
this assumption, we modified the above mentioned ”qrels” file to include
documents retrieved from chatGPT-3 as relevant documents. Our hypoth-
esis was that if our assumption is correct, the retrieved results from the
search engine should also include documents generated by chatGPT-3 and,
at least in theory, should outrank or, at least, be in the top list of all other
relevant documents. This experiment would also demonstrate whether the
documents generated by chatGPT-3 are resilient to the number of query
and search engine configurations, 4 and 11, respectively. We used all of the
225 queries provided in the TREC collection. Every response obtained from
chatGPT-3 was given an identifier associated with the query that generated
the response. This way, we are able to track those documents that came
from the TREC collection and those that were generated by chatGPT-3.

5 Analysis and Evaluation

At this stage of the research, we were only interested in testing the qual-
ity of the responses returned by chatGPT-3 to a sample of the queries
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from TREC collection relevant judgment. We used our Solr engine appli-
cation experiment from our last research to generate the data and evaluate
the relevancy of documents retrieved compared to the standard pre-judged
documents. With the assumption that we made in section 4, indeed all the
documents generated by chatGPT-3 were ranked in the top 10 returned
results by the IR model. This proves, to some extent, that chatGPT-3 can
generate documents with a quality that equals or rivals the human-provided
relevant judgement. We also made the assumption that each generated re-
sponse was relevant to the query that chatGPT-3 responded to. In reality,
the same document may be relevant to several queries and in fact the AVI
TREC collection exhibits this behavior. Figure 1 shows the performance
of the IR model using mAP measure as computed by TREC evaluation
software. This topic presents a significant opportunity for extensive inves-
tigation and analysis, with the potential to supplant human judgment with
that of AI.
We conducted a frequency analysis on GPT documents within the corpus
we had for a single out of tested 11 configurations, considering their ranks
in all the queries. Our analysis revealed that GPT documents consistently
achieved a top 10 rank in all queries. The GPT document’s frequency of be-
ing in the top 10 ranks was further examined using non-parametric Sign and
Friedman tests across randomly selected queries samples, and it was found
that they achieved this high rank in most of the sampled queries (p < 0.05).
These findings provide strong evidence suggesting that GPT documents are
statistically significant, consistently outperforming other documents and
across multiple queries.

6 Conclusion

We have developed an experimental methodology using the Solr search en-
gine to generate and evaluate test results using TREC’s evaluation metrics.
The Solr search engine was configured and queries were expanded using dif-
ferent techniques. We used the same experimental platform to evaluate the
quality of documents generated by GPT-3 large language model-based plat-
form. Responses to our AVI’s topics, queries, obtained from GPT-3 were
added to the TREC AVI collection. We used the TREC test collections
and evaluation software to evaluate the retrieval model implemented by
Solr search engine. We observed that for all query list, the documents gen-
erated by GPT-3 were among the top 10 ranked documents returned by our
retrieval model. The results so far showed that changing either the search
engine configurations or the query rewrites did not have observable impact
on the ranking of those documents. In addition to the analysis provided
in section 5, advanced statistical modeling including document ranks and
scores can be further researched.
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Abstract: As the world faces the dire reality of climate change, hydrological
droughts have become a major concern, with devastating consequences for nature
and humans. In Bavarian rivers, low-flow events have occurred more frequently.
Therefore, this research project aims to quantify the primary drivers for these
events. In climatology, large ensemble climate projections of meteorological and
hydrological variables are commonly used to understand the effects of climate
change and to make possible predictions. Using ten different realizations, a logistic
regression is applied to analyse the data, evaluate the effect sizes and predict
low-flow scenarios under changing climate conditions. Furthermore, a K-means
clustering algorithm is applied to detect spatial patterns. The analysis reveals
large regional differences between the effects and significance of drivers such as
precipitation, soil water, snow storage and temperature on the emergence of low-
flow in ”hydrological Bavaria”. For more extreme climate conditions, a partially
severe increase of low-flow events can be detected.

Keywords: Climate Modelling; Applied Statistics; Scenario Analysis.

1 Introduction

Changing climate is not only inducing extreme weather patterns but also
affects hydrology. In recent years, Bavaria faced more frequent and intense
low-flow events. Those events change nature and animal habitats, cause
damage to infrastructure and economy and impact the water supply (Marx
et. al. 2018). This project contributes to a better understanding of the

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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climatological and hydrological drivers of low-flows in different catchments
of ”hydrological Bavaria” and their assessment of future climate change.

2 Data

The data are composed of ten hydrological simulations of the WaSiM model
(Willkofer et al. (2020)), each of which is driven by a member of the single
model initial condition large ensemble CRCM5-LE (Leduc et al. (2019)).
The differences in the corresponding realizations between members are in-
duced by perturbations of the initial conditions of the members, yet they
are homogeneous in their distributional characteristics. This approach al-
lows natural variability to be taken into account. The resulting time series
data covers three-hourly data from 1990 until 2020 which is aggregated into
daily data for this analysis.

Hydrological Bavaria (see Figure 1) is
divided into 98 catchments with virtual
gauges that act as measuring stations.
The data set provides regional catch-
ment averages of hydrological and me-
teorological variables such as precipi-
tation, temperature, snow storage and
soil water. A day is classified as a low-
flow event when drainage falls below the
season-, catchment- and member-specific
NM7Q for at least 3 days in a row. The
seasons refer to the hydrological half-
year, with summer covering the months
from May to October and winter the
months from November to March.

±

0 100 200 300 40050
km

FIGURE 1. Map of hydrological
Bavaria.

3 Methods

The occurrence of low-flow events is explained by logistic regressions with
drivers such as precipitation, temperature, soil water and snow storage as
covariates, as well as interaction terms between temperature and precipi-
tation, soil water and snow storage respectively. Due to the data situation
at hand, some challenges arise. To account for a time lag in the drainage-
driver relationship, each covariate is included as a simple moving average,
the length of which is determined by the inertia of the driver on drainage.
Thus, the rolling window for soil water is set to 60 days, for snow storage
to 30 days and for the rest of the covariates to 7 days. Since the effects of
drivers differ between hydrological half-years, separate models are fitted for



Meier et al. 515

O
dd

s 
−

 P
re

ci
pi

ta
tio

n 
(1

m
m

) 
−

 W
in

te
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
dd

s 
−

 S
oi

l W
at

er
 (

1%
) 

−
 W

in
te

r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIGURE 2. Effects for a 1 mm increase of precipitation in winter (left) and for
a 1 % increase of soil water in winter (right) on the odds of low-flow events per
catchment. Non-significant effects are displayed in white.

each season. The members are taken into account by means of individual
logit models and in order to make the effects comparable, the coefficients
are averaged over the 10 members. The Bonferroni correction is therefore
applied to the assessment of the significance of the effects. Since the catch-
ment ”Altmühl-Aha” is not subject to any low-flow events in 9 out of 10
members in summer, this catchment is excluded from the modelling process.
Altogether, fitting one model for each combination of catchment, member
and season leads to a total of 1959 logistic models. To group catchments
according to drivers, a K-means clustering algorithm with Euclidean dis-
tance is applied to the coefficients averaged over members of each season.
Using the elbow method the optimal number of clusters is set to 4.

4 Results

To assess the goodness of fit, the AUC is determined for each model using
test sets consisting of members not used for training. This mostly yields
values greater than 0.9, indicating a very good fit. The member-averaged
effect sizes are interpreted in terms of odds. Despite natural variability, a
comparison of member-specific coefficients leads to very similar results.

4.1 Effects

Analysing the effects of drivers on low-flow events reveals striking regional
differences in magnitude and significance. For instance, Figure 2 indicates
that in each catchment, an increase in precipitation or soil water decreases
the odds of low-flow in winter. Due to a large fraction of snow fall on
precipitation in the Alpine regions, no significant effects at a corrected sig-
nificance level are observable. The north of hydrological Bavaria is strongly
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FIGURE 3. Clusters for coefficients in summer and river basins.

influenced by precipitation, while the south is more affected by soil wa-
ter. These effects are significant, whereas temperature and snow storage
show hardly any significant effects. Different combinations of effect sizes
and directions between north and south indicate regional differences in the
driving dynamics of low-flows.

4.2 Clustering

The clustering groups catchments according to the direction and magnitude
of the effects (see 4.1). Subsequently, a cluster is a group of catchments
with similar low-flow driving dynamics. For demonstration purposes, only
the summer coefficient results are shown in Figure 3. The cluster sizes for
the summer coefficients vary, ranging from 6 to 43 catchments within a
cluster. The clustering reveals regional similarities in the low-flow driving
process. Catchments that are regionally close to each other tend to have
similar effects, while more distant catchments are unlikely to exhibit similar
patterns. The catchments belonging to clusters 1 (orange) and 4 (purple)
are scattered throughout hydrological Bavaria, while the other two clus-
ters (blue and green) are more regionally contiguous. The northern part of
hydrological Bavaria, comprising the Main and Elbe river basins, is domi-
nated by the largest cluster 1, which is characterised by a low temperature
effect and a lack of snow storage. The latter is due to the fact that its catch-
ments have no snow storage in summer. In contrast, the smallest cluster
(cluster 3), located in the centre and entailing some catchments of the
Danube, shows the highest mean effect of snow storage and temperature.
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FIGURE 4. Number of predicted low-flows in summer 2010 for unmodified data
(left) and differences in the number of days for the climate scenario (right).

Meanwhile, the Alpine region, where the catchments of the river Inn are
located, is grouped in cluster 2 and shows the highest mean effect size for
precipitation and the second highest effect size for bottom water. It stands
alone in having a negative mean temperature coefficient, indicating that an
increase in temperature leads to a decrease in the probability of low-flow
events. Cluster 4, the second largest cluster with 31 catchments, is scat-
tered across the heart of hydrological Bavaria and shows the largest mean
effect of soil water.

4.3 Climate Scenario

In order to analyse the impacts of potential changes of the current climate,
e.g. a 3 °C rise in temperature, a 50 % reduction in precipitation and the ab-
sence of snow storage, the fitted models are now utilized to predict the num-
ber of low-flow events for the original and climate scenario data in summer
as an example. Due to substantial considerations including a ROC analysis,
the threshold for predictions in Figure 4 is set to 0.4. While fewer low-flow
events are observed in central and south-western catchments compared to
predictions for unmodified data, the expected number of events increases in
large parts of hydrological Bavaria, in some catchments even drastically to
up to 27 days more. Overall, these hypothetical climate changes result in an
additional 519 low-flow days in the summer season across all catchments.
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5 Conclusion and Outlook

By using logistic regression, including rolling averages and interactions in
the drivers, a framework can be created that facilitates an understanding
of the process of low-flow emergence in hydrological Bavaria and allows a
comparison between catchments. The analysis exhibits differences in effect
size and direction of the drivers by region and season. Clustering of the co-
efficients derived for summer reveals that the north can be characterized by
low temperature and snow storage effects, while the south is dominated by
stronger effects of precipitation and soil water. A comparison of predictions
for original and more extreme climate data shows a partly drastic increase
in low-flow. This analysis compares the 10 members separately, however,
a mixed model including members as random effects could be applied to
the whole data set. Ongoing research is extending the presented approach
by introducing non-linear effects and more flexible time lag structures for
more detailed modelling of drivers in individual catchments.
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Abstract: For modelling the number of goals in football, the model by Dixon
and Coles (1997) has found tremendous impact. By extending the classical double
Poisson model such that the probabilities for 0-0, 1-0, 0-1 and 1-1 can be changed,
this model is widely considered as the standard model for football scores. We
show that this model is also a special case of a multiplicative model known as the
Sarmanov family. Within this family we explore further bivariate distributions
and fit these extended models to women’s football data, as previous models have
been applied to men’s football only. However, the scores in women’s football are
different to those of men’s football. We find that an extended Sarmanov model
emerges as the most promising model for women’s football scores.

Keywords: Bivariate distribution, Correlation, Sarmanov family, Football scores

1 Introduction

Modelling football score is of interest for many people such as sports bet-
tors, analysts, and teams’ coaches to make informed decisions about the
game and for a better understanding of the sport. In the academic litera-
ture, Maher et. al (1982) were the first to investigate the joint appearance
of goals in men’s football. Since then, a variety of model extensions have
been proposed, e.g. bivariate Poisson models by Dixon and Coles (1997),
Karlis and Ntzoufras (2003) and Groll et. al (2018).
Among these, the model by Dixon and Coles (1997) has been considered as
one of the most widely used. In their work, the authors model correlation
between the number of goals by shifting probabilities between the scores
0-0, 0-1, 1-0 and 1-1 as they observed more 0-0s and 1-1s in real data of

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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men’s football scores compared to what would have been expected under
independence. The empirical properties of the other scores matched the
assumption of independence. However, such assumptions are not realistic
when modelling women’s football scores.
To find an appropriate statistical model for women’s football scores, we
extend the Dixon and Coles model. In particular, we show that it is a
special case of the Sarmanov family (Sarmanov, 1966). Within this family,
we demonstrate how to shift probabilities for scores with more than one goal
and we allow for marginals other than the Poisson distribution. Finally, we
apply our proposed models to women’s football data from the top leagues
in Europe for the seasons 2011/12–2018/19 and 2021/22.

2 Extending the Dixon & Coles model

In this section, we first show that the model by Dixon and Coles (DC) is
a special case of the Sarmanov family. Afterwards, we extend this model
based on the properties of the Sarmanov family.

2.1 Dixon and Coles model as a member of Sarmanov Family

The Sarmanov family, introduced by Sarmanov (1966), assembles bivariate
probability distributions which can be constructed by different probability
mass functions Pi(xi), and bounded non-constant functions qi(xi), i = 1, 2.
If these functions fulfill the condition

∑∞
xi=−∞ qi(xi)Pi(xi) = 0, we can

define a joint pmf

P (X1 = x1, X2 = x2) = P1(x1)P2(x2)[1 + ωq1(x1)q2(x2)], (1)

with ωq1(x1)q2(x2) specifying the dependence of X1 and X2. For ω = 0,
the variables X1 and X2 are independent, i.e., the model collapses to a
simple double Poisson model. The correlation between X1 and X2 is given
by

ρ =
ωu1u2
σ1σ2

where ui = E[Xiqi(Xi)], for i = 1, 2 (Bermúdez and Karlis, 2021).
By setting ω = −ω̃ and selecting the functions q1(x1) and q2(x2) as

qdc(xi) =

 −λi if xi = 0
1 if xi = 1
0 if xi > 1,

where λi is the mean of the Poisson-distributed random variable Xi, we
end up with the well-known bivariate model by Dixon and Coles (1997).
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FIGURE 1. This figure displays different bivariate distributions with Poisson
marginals based on the Sarmanov family. For the Poisson means we consider 1.3
and 1.2 for x1 and x2, respectively.

2.2 Extended models

Within the Sarmanov family, we can extend the DC model by choosing
q−functions other than qdc. In particular, by using

q̂(xi) =

 −λ
2
i if xi = 0

λi if xi = 1
0 if xi > 1

or q(s)(xi) =

 −xi!λ
s−xi if xi < s

ss! if xi = s
0 if xi > s,

we can change the intensity of the weights (q̂), e.g., to inflate the probability
of draws even more than in the classical DC model, or to shift probabilities
to scores greater than one (q(s)) for an arbitrary s ∈ N. In Figure 1, we
compare the probabilities under the different proposed models. In partic-
ular, we the selected q−functions can also differ across the two teams, as
demonstrated in the bottom right panel that. Sticking together different q−
functions enables us to develop even more powerful bivariate distributions.
For data exhibiting overdispersion, the assumption of Poisson marginals
might not be well suited. We thus further allow for other marginals,
e.g., the negative binomial distribution. For this distribution, a candidate
q−function is

qnb(xi) =


−ϕi

(
µi

ϕi+µi

)
if xi = 0

1 if xi = 1
0 if xi > 1,

where µi is the mean and ϕi the overdispersion parameter of Xi, for i = 1, 2.
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Another characteristic of the q− functions considered so far is that they
weight only a finite number of pairs. Following Ting Lee (1996), we can use

qSar(xi) = exp(−xi)− Li(1),

xi ∈ N0, to shift probabilities across the entire support. Here, Li(1) is the
value of the Laplace transform of the marginal distribution at s = 1, that
is Li(s) = E

(
e−sXi

)
=
∑∞
xi=0 exp(−sxi)P (xi) with P (·) denoting the pmf

of the i−th marginal distribution.
Moreover, for Xi being negative binomial distributed, we can generalize
qSar and construct an Alternative Negative binomial Sarmanov (ANS)
distribution by considering

qANS(xi) =
(
ϕi/(ϕi + µi)

)xi − ci,

for ci =
(

ϕi

ϕi+µi

)ϕi
[
1−

(
1− ϕi

ϕi+µi

)
ϕi

ϕi+µi

]−ϕi

, xi ∈ N0, i = 1, 2.

When comparing the Sarmanov model with the Laplace transform and
negative binomial marginals with the ANS model, it can be seen that the
latter model places more emphasis on clear wins rather than scoreless draws
and close wins.

3 Application

To demonstrate the feasibility of the proposed models and their usefulness
for practical applications, we fit the presented models to women’s football
scores from the seasons 2011/12-2018/19 and 2021/22 of the first women
leagues in England, Germany, France and Spain. We observe several pecu-
liarities in the data which are different to men’s football scores: First, 0-0s
are clearly underrepresented in women’s football while clear wins with one
team conceding no goals are overrepresented. The Chi-squared test rejects
the null hypothesis of independence for all leagues except the English one.
Second, the data exhibit overdispersion. Third, we find a substantial nega-
tive correlation in all leagues (-0.269 (England), -0.352 (Germany), -0.395
(France), and -0.263 (Spain)). When fitting the models proposed in Sec-
tion 2 to our data, we include team-specific effects and a home-team effect.
Table 1 summarises the AIC results for the different models and leagues.
We find that the extended DC model emerges as the most promising model
for the English league according to the AIC. This is most likely caused by
only a minor amount of overdispersion in the data compared to the other
leagues. Except for England, the ANS model provides the best model fit
to women’s football data as it is able to capture overdispersion while still
being flexible enough to model the underrepresentation of scoreless draws
and the overrepresentation of high wins. These two properties cannot be
captured by the classical Dixon & Coles model which renders is not suitable
for modelling women’s football scores.
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TABLE 1. The table displays the AICs for the models fitted. Bold values indicate
the models preferred by the AIC.

England Germany France Spain

double Poisson 4016.23 7348.87 7110.91 13529.97
double NB 4017.61 7334.03 7104.77 13518.99

D&C Poisson 4018.07 7350.77 7112.88 13531.52
D&C Poisson with q̂ 4018.10 7350.86 7112.68 13531.48
D&C Poisson with q(2) 4014.14 7350.87 7112.86 13531.95
D&C NB with qnb 4019.39 7335.94 7106.74 13520.57

Sarmanov Poisson 4016.31 7340.10 7112.18 13529.48
Sarmanov NB 4017.59 7324.81 7105.95 13518.47
ANS 4018.12 7321.30 7102.81 13515.88

To check the adequacy of the model we fit the ANS model to two-thirds
of the 2021/22 season in Germany, simulate the remaining matches based
on the fitted model and calculate the final points. We find that the pre-
dicted 95% confidence intervals (obtained via the Monte Carlo simulations)
include the true final points for each team (see Figure 2).

FC Carl Zeiss Jena

SC Sand

SGS Essen

SV Werder Bremen

1. FC Koeln

Bayer 04 Leverkusen

SC Freiburg

TSG Hoffenheim

Turbine Potsdam

Eintracht Frankfurt

Bayern Muenchen

VfL Wolfsburg

20 40 60
Points

FIGURE 2. The plot displays the true final points (dark blue points) and the 95%
confidence intervals (light blue lines) of the simulated final tables of the German
Frauen-Bundesliga under the ANS model.

4 Discussion

This paper presents several extensions of the Dixon and Coles model, which
is a widely used model for predicting football scores. Our extensions are
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based on the Sarmanov family. We find that (in contrast to the DC model)
the ANS model, which changes probabilities for a wider range of values and
uses negative binomial marginals, is well suited for modeling and predict-
ing women’s football scores. In the future, to further improve predictions of
women’s scores it could be helpful to consider, e.g., the teams’ recent per-
formances. In this context, one possible approach is to adopt the method
proposed by Dixon and Coles (1997), which involves giving less weight to
matches that occurred further in the past. Alternatively, one could con-
sider using latent states to model a team’s form, similar to the approach
considered by Ötting et al. (2021).
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Abstract: When analysing educational data possible challenges include the se-
lection of useful predictor variables for a (multilevel) regression model as well as
coping with extremely large sample sizes. This work extends a previous study
and proposes to assist variable selection and quantification of relevance of these
variables in a regression model with tree-based methods as well as effect size mea-
sures. The respective effect size measures were generalized to be also applicable
in the setting of mixed linear models (multilevel models). When predicting math
competencies of 4th grade students in Austria, this novel procedure yields an
improved model fit as well as relevant insights about factors that influence math
competencies. Future work will investigate the potential of the proposed proce-
dure when applied to high-dimensional settings with several hundred variables.

Keywords: Effect Size; Variable Selection; Regression Model; Decision Trees;
Math Competency.

1 Introduction

A recent project investigated the use of classification trees as a tool to assist
variable selection for predicting a binary response (Möller et al., 2022). The
study revealed that the classification tree based variable selection is able
to improve the performance of (multilevel) regression models, which orig-
inate from a theoretical educational approach. Furthermore the variables
identified as relevant by the classification trees were in accordance with
educational findings. In this study the approach of Möller et al. (2022) is
refined: a stepwise variable selection procedure is presented, which takes
into account the knowledge from educational theory, the variable selection
from decision trees and effect size as a measure of relevance for predictors.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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The new procedure is presented by the example of predicting students’
mathematical competency based on a restricted set of variables. Further
research will reveal the full potential of the proposed procedure when ap-
plied to high-dimensional settings consisting of several hundred variables.

2 Educational Research Questions and Data

The data analyzed in this study is obtained from the Austrian educational
standards test in mathematics for fourth graders in 2018 (BIFIE, 2019).
The Austrian standards testing is mandatory and leads to a complete sur-
vey of 73,780 students in 4,925 classes and 2,961 schools. The data includes
an overall score for students’ competencies in mathematics (PVM4), mea-
sured on a continuous scale with mean 551.4868 and standard deviation
98.5153. Additional background information of students, teachers, parents
and schools is collected via so-called context questionnaires (BIFIE, 2018).
This study includes a subset of 39 variables (plus an anonymized ID vari-
able for the class and school).
Starting point of the case study on the proposed selection procedure is
a benchmark model to predict the math competency (PVM4) of students.
This model includes determinants of school performance, such as gender
(geschlecht), migration background (mig), mother tongue (spr-ndeu),
social status , (sozstat) and degree of urbanization at students’ place of
residence (urban). These variables are determinants which are known from
educational theory to influence (math) competence of students (Brühwiler
and Helmke, 2018). In a stepwise procedure the benchmark model is en-
larged by adding further variables from the data set to improve the fit of
the model to the given data. The additional variables are also analyzed in
terms of their relevance within the model as well as in terms of educational
knowledge possibly gained from the extended model.

3 Measures of Effect Size

A widely known and applied measure is Cohens’s d (Cohen, 1988). It is
an effect size measure for the two-sample t test with equal variances for
the null hypothesis H0 : µ1 = µ2 versus the alternative H1 : µ1 ̸= µ2. It

is related to the test statistic t by the formula d = t
√

n1+n2

n1n2
, where n1

and n2 are the sample sizes in the two groups. According to Cohen, values
|d| = 0.2, |d| = 0.5 and |d| = 0.8 indicate a small, medium and large effect,
respectively.
A corresponding measure when the variable of interest (response) depends
on further independent variables is given by Cohen’s f2, which is based
on the F test of a linear hypothesis. It measures the effect size of one or
multiple independent variables given a second set of independent variables.
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The measure can be computed as f2 =
R2−R2

0

1−R2 , where R2 is the coefficient
of determination from the complete model with both sets of variables and
R2

0 is the coefficient of determination in the reduced model containing only
the second set of variables. Cohen suggests values f2 = 0.02, f2 = 0.15
and f2 = 0.35 for a small, medium and large effect, respectively. Groß
and Möller (2023a) propose a generalization d∗ of Cohen’s d for a grouped
variable that additionally depends on sets of independent variables. The
generalized version d∗ has an exact relationship with the measure f2. Fur-
thermore, Groß and Möller (2023b) consider an adaptation of f2 for a linear
mixed model (multilevel model) containing additional random effects. The
authors outline that f2 can be obtained in a unifying framework applicable
for the classical fixed effect linear model as well for a random effects model.
In both cases f2 can be computed from an F statistic for a linear hypoth-
esis. However, in case of a random effects model the F statistic is defined
subject to the estimate of the covariance matrix of the response, which
depends also on the covariance structure of the random effects. Given an
estimate of the covariance, f2 can directly be obtained as defined above,
based on the coefficient of determination R2.

4 Application to Prediction of Math Competency

For predicting the math competency PVM4 the benchmark model

M1 : PVM4 ∼ geschlecht + mig + sozstat + spr-ndeu + urban

contains only predictors chosen by educational theory. A predictor is sub-
sequently added to the model, yielding a nested model sequence. The can-
didate variables to be added to the current model are split variables in a
regression tree grown on the full data set. They were added to the current
model in the order they appeared in the tree: the variable ma-sk-mean was
chosen for the very first split, maueb-wh-nahi was chosen in the second
split, and bil-hoechst in the third one.
In the first step the mathematical self-concept (ma-sk-mean) is added to
M1, yielding the model M2. Then the number of hours for private tutor-
ing (maueb-wh-nahi) is added to M2, yielding model M3. In the final step
the parents aspiration of the highest education their children will achieve
(bil-hoechst) is added to M3, yielding the largest model M4. The cor-
responding multilevel models additionally contain a random intercept on
school level.
Table 1 shows the (adjusted) coefficient of determination R2 for each model,
and Cohen’s f2 for the additional variable given the predictors in the pre-
ceding model – for the fixed effect model and the respective one with ad-
ditional random intercept. It is clearly visible that adding tree predictors
increases the fit to the data in terms of R2 for both, the pure fixed effect
and the random intercept model.
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TABLE 1. (Adjusted) Coefficient of Determination R2 of the four models as well
as Cohen’s f2 of fixed effect model and model with additional random intercept
on school level, for the additional predictor added in each subsequent model.

Model (additional predictor) R2 R2
random f2 f2random

M1 0.2412 0.1938 - -
M2 (ma-sk-mean) 0.4023 0.3906 0.2695 0.3257
M3 (maueb-wh-nahi) 0.4267 0.4166 0.0426 0.0446
M4 (bil-hoechst) 0.4448 0.4367 0.0325 0.0356

Adding only the first variable ma-sk-mean already increases the fit substan-
tially compared to the benchmark model. The effect size of ma-sk-mean is
between medium and high. The effect sizes of the other two variables are
small. In a variable selection procedure based on f2 this suggests to add
ma-sk-mean to the model, but refrain from adding the other two, although
the F-test identifies them as highly significant with p-value ≈ 0. Adding a
random intercept to the model yields an even more pronounced effect, for
each of the added variables.
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FIGURE 1. Histogram of PVM4 and boxplots of PVM4 in the two groups of
ma-sk-mean, with L (low) denoting values smaller than the mean and H (high)
denoting values larger than the mean.

Above observations illustrate clearly that the strength of an effect of a
variable can be influenced by the presence of additional (fixed or random)
variables. If for example an additional continuous or a grouping variable (as
e.g. represented by a random or a fixed effect) contains information about
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the response that the other variables in the model cannot fully capture,
adding this new variable peels out the effect of the variable of interest
even clearer. Although the actual value of f2 (for both types of models)
depends on the order in which the variables are added, the effect of adding
ma-sk-mean is always largest, regardless in which step it is added to the
current model.
As Cohen’s d is more popular among educational scientists than Cohen’s
f2, an alternative approach to investigate the relevance of ma-sk-mean is
its dichotomization so that d or the generalized version d∗ can be com-
puted. When using as cut point for the two resulting classes the mean
of the variable in the data set this results in the effect size d = 0.9799,
that is, the two groups resulting from dichotomization have a strong ef-
fect on the math competency. The generalized Cohen’s d∗ allows to assess
the effect size of above dichotomized variable ma-sk-mean given additional
predictors, in this case the ones in the original model M1, yielding a value
d∗ = 0.8558. This also indicates a strong (but slightly smaller) effect of
the binary variable given the educational predictors. Figure 1 shows the
empirical distribution of PVM4 together with boxplots of the two groups
resulting from the dichotomization. The boxplots indicate a substantial
difference between the two groups L (values lower than the mean) and H

(values larger than the mean), which is confirmed by the small p-value of
the respective t-test and the large effect according to Cohen’s d or d∗.
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FIGURE 2. Predicted PVM4 by the regression model M2 across the range of
ma-sk-mean with other predictors fixed at two sets of values.

The impact of ma-sk-mean on math competency is not contradictory to ex-
isting educational theories (Ahrens et al., 2016). Nonetheless, this variable
would not be chosen based on an educational model building approach.
Figure 2 shows the predicted values of PVM4 with model M2 for the range of
possible values of ma-sk-mean, while the other predictors are held constant
at two sets of values, each yielding a predicted regression line. The two sets
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of predictor values represent students with disadvantageous (group A) and
advantageous context variables (group B). In both groups the mathemat-
ical self-concept has a strong influence on the level of math competence.
Especially for the group of students with disadvantageous context factors
an increase of the self-concept from value 1 to value 4 leads to an increase
of two levels in math competence (see BIFIE, 2018) from “standards not
achieved” (below bottom dashed horizontal line) to “standards achieved”
(between middle and top dashed horizontal line). Thus, it is indeed bene-
ficial to include this variable as predictor for PVM4.

Acknowledgments: We thank the Federal Institute for Quality Assur-
ance of the Austrian School System for providing the data via the research
data library (https://iqs.gv.at/fdb).
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Abstract: The goal of this paper is to investigate the performance of various
time series models on the basis of their ability to predict future data, in the
context of Industrial processes. The processes in question were explored in terms
of both daily and hourly data. The motivation for this choice being the varying
predictions that may be required in an industrial setting. We considered several
models, including SARIMA, exponential smoothing and TBATS. We used simu-
lated data based off real-world industry data to train our models. This data had a
strong weekly pattern, but no significant trend. We then compared these models
based on their RMSE values produced in relation to another period of test data.
For our daily data, we found that the TBATS model generally outperformed the
SARIMA and Exponential Smoothing models, however, there were exceptions.
When considering hourly data, the only viable model out the ones we considered
was the TBATS model. The results obtained during this research can be used to
inform decisions in relation to industries seeking to create accurate predictions
for various processes. However, further research should be used to explore the
limitations of the models examined in this paper.

Keywords: Seasonal ARIMA; Exponential Smoothing; TBATS.

1 Introduction

The goal of this paper is to explore the types of time series models that
may be applied in an industry setting. As a time series can be defined as a
series of values occurring at successive times, such a definition could be ap-
plied to many industry processes. Therefore modelling and predicting such
data could lead to benefits, such as detecting unwanted trends or unusual
deviations from previous data. Such models include ARIMA, Exponential
Smoothing, and TBATS, with TBATS being a special case of our Expo-
nential Smoothing models. In section 2, we will explore these models in

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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greater detail before using them to model and predict data that was simu-
lated based off real-world industry data. This data had a weekly seasonality
and no significant trend. We also considered this data as both hourly and
daily, to demonstrate the flexibility of such models. The accuracy of these
predictions was then compared via RMSE values in section 3, through mul-
tiple simulations of our data, using functions from packages ’forecast’ and
’TSA’ in R. This is followed by a brief conclusion of our results in section
4.

2 Exploration of Time Series Models

Within this section, we will explore the time series models we wish to
compare. The data we considered for our comparison had a weekly pattern,
and no significant trend.
The SARIMA model can be represented as combination of a standard
ARIMA model with a Seasonal ARIMA model, ARIMA(p,d,q)X(P,D,Q)s,
where p and P represent the number of lag components we include in the
model, d and D represent the number of times the data was differenced,
q and Q represent the the number of components of the Moving Average
model we include, and s represents the period for our seasonal difference:

ϕ(B)Φ(B)(1−B)d(1−Bs)DYt = θ(B)Θ(B)et

Note: B represents the backward shift operator.
There is no one single general equation of exponential smoothing models,
as the models which fall under this category all differ to some extent. The
common theme being that the models predicts future values based off some
weighted combination of past values. Two models did appear to fit the data
more frequently than the other models in this category. A simple exponen-
tial smoothing model with additive errors, and an exponential smoothing
model with additive errors and additive seasonality, however, other choices
did appear. Starting with our simple exponential smoothing model with
additive errors and additive seasonality:

yt = lt−1 + st−m + ϵt

lt = lt−1 + αϵt

st = st−m + γϵt

where lt is the level at time t, st is our seasonal component, α and γ are
the smoothing parameters and m is our period.
For our simple exponential smoothing model with additive errors, we simply
remove our seasonality component.
The last model we consider is the TBATS model, which builds on the
above exponential smoothing models by incorporating Fourier terms into
the model. This change leads to certain benefits, one of which is the ability
to handle larger seasonal periods.
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2.1 Daily Data

For our daily data, all the models we considered were suitable, as we were
dealing with a weekly pattern. This allowed us to explore the performance
across each of these models.

2.2 Hourly Data

In the case of hourly data, the weekly pattern turned into a period of 168.
As such, our previous models were not suitable. Therefore, the TBATS
model was the only viable option. Due to this, we will not draw comparisons
between the RMSE values. However, we will still compare the forecasts this
model produces to the real data obtained from the following week.

3 Comparison of Time Series models

Now that we have discussed the models we wish to use, and the context
in which we could use such models, we can compare their performance in
relation to daily data, via RMSE values.

TABLE 1. Example RMSE values

Model RMSE values

SARIMA 0.297
ETS 0.273
TBATS 0.267

In Table 1, we have 3 RMSE values, obtained from one simulation of our
data. As we can see, the TBATS has performed the best, followed by ex-
ponential smoothing and SARIMA. This pattern persisted throughout the
majority of the simulations we ran. Nonetheless, we see in Figure 1 and
Figure 2 that the ARIMA and ETS models were still able to give accurate
predictions for the next week of data, despite being outperformed by the
TBATS model.
For our hourly data, as mentioned in section 2, the SARIMA and Expo-
nential Smoothing models were not suitable for this model. As such, we
cannot compare the RMSE values from the TBATS to gauge how well it
performed. However, we can still compare our predictions with the actual
data.
As we see in Figure 3, the TBATS model has managed to accurately predict
the next week of data. This result was repeatedly obtained through multiple
simulations.
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FIGURE 1. ARIMA predictions Vs Test Data

FIGURE 2. ETS predictions Vs Test Data

FIGURE 3. TBATS Prediction Vs. Test Data

4 Conclusion

In regards to daily data, we found that TBATS model typically performed
the best, followed by exponential smoothing models, and SARIMA models.
However, we found that all the models we considered were able to give
reliable predictions. It is also worth noting that the TBATS model will
not always be the most suitable model for predicting industry processes.
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When considering other processes within this research, the SARIMA model
became the ideal choice of model. As such, this paper has demonstrated the
benefits of applying such time series models to industry processes, however,
further research should be used to explore the limitations of such models.
Another limitation of this short paper is the lack of exploration in relation
to models which can model large periods, such as the 168 period of hourly
weekly data. Other models which could be explored in this regard may
include dynamic regression models, and GP models. Another avenue of
exploration within this area would be the comparison of performance from
the individual models listed within this paper, to different combinations of
those same models. Although such models typically lead to more accurate
predictions, the time required to create such predicitons may not be ideal
in an industry setting.
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Abstract: Multinomial models are used for analysis of contingency table data
with probability specifications designed to allow dependence between variables.
These models, however, assume that there is no association between underlying
trials, which is likely violated in clustered data. We assess the flexibility of alter-
native categorical data models that relax the assumption of trial independence.
The conceptual probability mechanisms for trial association in a couple of cate-
gorical data distributions that allow for data dispersion are discussed. Through
analysis of simulated data we explore the utility of modeling trial association
possibly as a substitute for higher-order variable dependencies.
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1 Introduction

Analysis of multiple categorical outcome variables is often done through
modeling of contingency table data. These aggregated cross-tabulations of
qualitative information can be assumed to arise from a variety of sampling
mechanisms such as Poisson, multinomial, and product multinomial
(Agresti, 2012). In part due to computational and notational simplicity, a
Poisson loglinear model is commonly fit to the table cell counts with the
mean parameter structured to allow for relationships between variables.
The Poisson sampling mechanism specifies that the cell counts are
independent and that the number of trials populating the table is random.
Variable relationships estimated with a multinomial model will be the
same as for the Poisson model, however, multinomial sampling assumes
that there are a fixed number of underlying independent trials.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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We are interested in analyzing contingency table data using extensions of
the multinomial distribution that allow trial association. Using these ex-
tended multinomial distributions, we empirically explore two sources of cell
dependencies and their relation to each other: the (in)dependence structure
between the variables measured through the probability parameters and
the association between trials measured through an association parameter.

The Census Bureau collects household and person characteristics that are
often categorical: for example race, sex, and age in the Decennial Census.
Characteristics within a cluster – e.g. a group of people in a household or
a group of households in a low-level geography – may be related through
either observed or unobserved information. Observed characteristics that
distinguish clusters can be incorporated in traditional contingency table
analysis as an additional dimension in the table (i.e. through specification
in the multinomial probabilities); however unobserved characteristics would
be ignored with the assumptions that the trials – e.g. people or households
– are independent. We are interested in flexible models that allow for the
possibility of association through clustering that is not directly observed.
Such models may offer improvement over traditional joint imputation mod-
els for categorical variables in the presence of missing data.

2 Contingency Table Notation and Assumptions

Consider two nominal categorical variables X1 and X2 with I and J cat-
egories, respectively. The corresponding two-way contingency table counts
the occurrence of each of IxJ possible combinations of X1 and X2. Table 1
shows the 3x3 table that cross-classifies n =

∑3
i=1

∑3
j=1 nij trials.

TABLE 1. Two-Way Table Structure with I = J = 3.

X2

1 2 3

1 n11 n12 n13
X1 2 n21 n22 n23

3 n31 n32 n33

Let πij = P (X1 = i,X2 = j) be the joint probability that a trial occurs

in cell (i, j); πi+ = P (X1 = i) =
∑J
j=1 πij be the marginal probability

for X1; and π+j = P (X2 = j) =
∑I
i=1 πij be the marginal probability for

X2. The joint probability mass function for the table of counts assuming
multinomial sampling with fixed sample size n is

P (X = x) =
n!

n11! . . . nIJ !

I∏
i=1

J∏
j=1

π
nij

ij ,



538 Trial and variable association in contingency table data

where we let X = (n11, . . . , n1J , . . . , nI1, . . . , nIJ) be the collection of all
IxJ cell counts nij . Dependence between variables is captured through
assumptions on the structure of the joint probabilities. For example, the
independence model defines each cell probability as the product of the two
marginal probabilities: πij = πi+π+j as opposed to the saturated model
that does not have any simplification of πij . The multinomial model for
contingency table data assumes that the underlying trials are independent.
That is, each trial follows the same one-trial multinomial probability dis-
tribution with parameters {πij}. The specification of the cell probability
structure may or may not assume dependence structure between variables,
but trials are always assumed to be independent.

3 Flexible Multinomial Distributions

We discuss some flexible alternatives to the multinomial (MN) distribution
that allow for potential excess variation as compared to the multinomial
distribution – variation that may be caused by trial association. We de-
scribe the probability mechanism for each distribution and focus on how it
accounts for potential trial association, setting aside for now dependence
modeled through the specification of the cell probabilities.

Dirichlet-Multinomial (DM)

The Dirichlet-Multinomial (DM) is a multivariate analogue of the beta-
binomial distribution that arises from a Pólya urn scheme (Mosimann,
1962). Each trial is a draw from an urn where the probability of draw-
ing a particular category changes each time a draw occurs depending on
the category of the current draw (i.e. double replacement). A vector x of
category counts aggregated over the n draws follows a DM distribution.
The dynamic nature of the category probabilities induces dependence in
the trials, whereas a static set of probabilities would yield the multinomial
distribution. The DM probability mass function can be written as

P (X = x) =
Γ (c) Γ(n+ 1)

Γ (n+ c)

I∏
i=1

J∏
j=1

Γ (nij + αij)

Γ (αij) Γ (nij + 1)
,

where αij = c πij , c = ρ−2(1 − ρ2) and 0 < ρ < 1 (Neerchal and Morel,
1998). In this parameterization, ρ controls the extent of the departure from
with multinomial, which is the special case at ρ = 0. With respect to the
Pólya urn scheme, ρ controls the effect of the replacement: ρ↗ ⇒ c↘ ⇒
fewer objects in the urn ⇒ larger effect of replacement on the category
probabilities, i.e. more clustering. DM shares the same first moment as the
multinomial distribution, but the dispersion/association parameter allows
the variance to inflate relative to the multinomial distribution: V ar (X) =
n
[
1 + ρ2(n− 1)

]
[Diag(π)− ππT].
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Random-Clumped Multinomial (RCM)

The Random-Clumped Multinomial (RCM) is based on a finite mixture of
multinomials. Trials in a cluster are randomly “clumped” to a common but
randomly selected category, whereas the remaining trials are assigned inde-
pendently (Morel and Neerchal, 1993; Nagaraj et al., 1998). The probability
mechanism can be notated as X = NX∗ + X∗∗, where X∗ ∼ MN(1, π),
X∗∗ ∼MN(n−N, π), and N ∼ Bin(n, ρ). The parameter ρ – the binomial
success probability for the number of clustered observations N – controls
the extent of the departure from multinomial, which is the special case at
ρ = 0. Trial association is driven by the random number of trials N that
have the same category as defined through X∗. RCM moments take the
same form as DM.

4 Analysis of Simulated Data

Through a simple simulation set-up we empirically assess and compare trial
and variable association in data with varying levels of both types of depen-
dence. We use a simple two-way contingency table with categorical variables
X1 and X2, with I = J = 2, 3, or 4 levels. We generate contingency table
data in two scenarios:

Scenario A, DM/RCM independence data (trial dependence only):

log πij = λ0 + λX1
i + λX2

j with ρ ∈ (.01, .25),

Scenario B, MN saturated data (variable dependence only):

log πij = λ0 + λX1
i + λX2

j + λX1X2
ij ,

where λX1
1 = λX2

1 = 0 and λ0 is defined to ensure the sum-to-one constraint
on the cell probabilities. Scenario A main effects are randomly generated
from N (0, 1); whereas Scenario B main and interactions effects are set to
zero to isolate the interaction effect λX1X2

22 which is varied from −1.5 to 1.5.
We generate R = 200 simulated tables each with n = 100 or 1000 trials
and fit MN, DM and/or RCM models. Data is generated and models are
fit using computation methods described in Raim et al. (2015).

4.1 Estimating ρ for DM and RCM with Correct Model
Specification

Large sample properties of the DM and RCM maximum likelihood esti-
mates (MLEs) have been studied with respect to increasing the number
of observed vectors of categorical counts. With only one set of categorical
counts X observed in a contingency table, we consider MLE properties in
the finite trial setting. Fitting correctly specified models on Scenario A sim-
ulated data, we find that the level of bias in estimating ρ for the DM and
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RCM model fit on one data table depends on (1) the number of trials n,
(2) the level of trial association, and (3) the degrees of freedom associated
with the model: see Figure 1 and Figure 2. The degrees of freedom – the
difference between the number of cells in the table and the number of pa-
rameters in the model – depends on the dimension of the table controlled
through I and J . In a k-way table with k > 2, the degrees of freedom also
depends on k and the the degree of variable dependence assumed in the
model (e.g. mutual vs. conditional independence).

FIGURE 1. ρ̂ % Bias, n = 100. FIGURE 2. ρ̂ % Bias, n = 1000.

4.2 Model Fit Comparisons with Incorrect Model Specification

Trial dependence only data (Scenario A) fit with variable dependence only
model (MN saturated model).

We are interested in assessing the probability of rejecting the MN indepen-
dence model (H0 : λX1X2

ij = 0) in favor of the MN saturated model when
data is simulated with only trial dependence (Scenario A). Figure 3 dis-
plays the empirical rejection rate from a likelihood ratio test with varying
levels of trial dependence assuming n = 1000 trials. We find the MN model
suggests significant interaction effects – indicating variable dependence –
as trial association increases, even though variable independence was not
assumed in generating the data. This suggests that the MN model accounts
for the trial dependence by attributing it to variable dependence. This re-
sult is observed for a low degree of trial association when the dimension of
the table is larger (i.e. I, J increases).

Variable dependence only data (Scenario B) fit with trial dependence only
models (DM and RCM independence model).

We are also interested in assessing the DM or RCM model for varying
levels of variable dependence in Scenario B simulated tables of n = 1000
trials. Figure 4 shows that, on average, the trial association parameter ρ is
estimated to be greater than zero as the MN interaction effect gets further
from zero. This suggests that DM/RCM accounts for variable dependence
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FIGURE 3. Empirical Rejection
Rate, MN Fit on Scenario A Data.

FIGURE 4. Mean ρ̂, DM/RCM Fit
on Scenario B Data.

by attributing it to trial dependence. This result is more pronounced
for (1) the RCM model – recall from Section 4.1 that DM more often
underestimates ρ; (2) a positive interaction effect with the RCM model –
where an increase in λX1X2

22 directly translates to an increased probability
(i.e. cluster) in one table cell; and (3) smaller tables – where the probability
shift to/away from (X1 = 2, X2 = 2) is spread over fewer table cells.

Figure 5 indicates that the empirical rejection rate of DM/RCM from a
Pearson χ2 test goes to one as the MN interaction effect goes away from
zero. This suggests that the DM and RCM models account for some vari-
able dependence through the trial dependence parameter ρ, but only in a
significant way for smaller levels of the interaction effect. DM/RCM model
evaluation though AIC similarly shows that DM/RCM performs just as
well (or better) as the correctly specified MN saturated model at small
levels of the interaction effect: see Figure 6. Interestingly, the RCM model
performs just as well as the MN saturated model for large positive interac-
tion effects, even though it is misspecified and relies on only one association
parameter.

FIGURE 5. Empirical Rejection
Rate, DM/RCM on Scenario B.

FIGURE 6. Mean AIC, Models Fit
on Scenario B Data.
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5 Discussion

Association in categorical variables may occur through dependence in trials
and/or variables. Loglinear models for contingency tables are designed
to assess relationships of variables through interaction effects capturing
variable association assuming independent trials. Extended multinomial
distributions such as DM and RCM that allow for dispersion – possibly
caused by trial association – offer a potential alternative, particularly
when trial clustering may be due to unobserved factors. However, DM and
RCM encounter challenges in application to contingency table data due to
the observation of only one count data vector.

In a two-way table simulation study we see that DM and RCM MLEs are
sensitive to the number of trials and number of parameters in the model.
Assuming n = 1000, we find that MN attributes trial dependence to vari-
able dependence and DM/RCM attributes low-level variable dependence to
trial dependence. The latter misspecification may be useful as the DM and
RCM models depend on only one dispersion parameter rather than a set
of interaction effects. Goodness-of-fit tests indicate that the one DM/RCM
association parameter substitutes for the set of interaction effects in limited
cases depending on the size of the table and the level of variable depen-
dence. Further study of multi-way tables with associated varying levels of
variable dependence assumptions (e.g. mutual vs. conditional) may pro-
vide better understanding of the utility of flexible multinomial models for
contingency table data.
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1 Introduction

In structural health monitoring, sensor data from structures such as bridges
are used to monitor the condition of structures. As these measurements
are typically not made under laboratory conditions, the data depend on
environmental influences such as temperature.

FIGURE 1. Test Bridge UniBw M
(Francesca Marsili, 2022)

FIGURE 2. Test Bridge UniBw M
(Alexander Mendler, 2022)

Therefore, a model to adjust these covariates is required before the associ-
ation between the sensor outputs can be analyzed.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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Viefhues et al. (2021) did a laboratory test in which they measured the
acceleration on a concrete beam for five different temperatures in a climate
chamber. Then they estimated the conditional covariance for these five tem-
perature values and used interpolation for estimating the covariances for
temperature values in between. In practice/reality, however, temperature
is a continuous quantity. Section 2 hence presents an approach where the
conditional covariance is estimated by use of a nonparametric, kernel-based
technique. Section 3 illustrates the application to the Test Bridge UniBw
M data set, the bridge with traffic simulation can be seen in Figures 1 and
2.

2 Conditional Covariance

Let x = (x1, . . . , xp)
T be a p-dimensional random vector describing p dif-

ferent sensor outputs and let z denote a potentially confounding covariate,
such as temperature. First, let us assume that x and z are jointly normal,
i.e. (

x
z

)
∼ N

((
µx

µz

)
,

(
Σx Ψ
ΨT σzz

))
(1)

with

µx =

µx1

...
µxp

 , Σx =

σx1x1
. . . σx1xp

...
. . .

...
σxpx1

... σxpxp

 , Ψ =

σx1z

...
σxpz

 .

Then for the conditional distribution of x given z we have

x|z ∼ N
(
µx +

1

σzz
Ψ(z − µz),Σx −

1

σzz
ΨΨT

)
.

For estimating the conditional covariance of xi and xj given z

σxixj |z = σxixj −
σxizσxjz

σzz
,

we can use the empirical versions of σxixj
, σxiz, σxjz and σzz.

However, the assumption (1) of (x, z) being jointly normal may be
too restrictive. Therefore we relax the assumption by requesting that only
the conditional distribution of x given z is normal. Then we have

x|z ∼ N (µx(z),Σx(z)) .

As a further generalization, we may even drop the distributional assumption
of normality and focus on the conditional variances/covariance. Then, for
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estimating the conditional covariance matrix Σ(z) of x given z we can use
a nonparametric, Nadaraya-Watson kernel estimator (Yin et al., 2010)

Σ̂(z) =

{
n∑
i=1

Kh(zi − z) [xi − m̂(zi)] [xi − m̂(zi)]
T

}{
n∑
i=1

Kh(zi − z)

}−1

,

(2)
where xi = (xi1, . . . , xip)

T, for i = 1, . . . , n, are observations of x avail-
able with associated (e.g., temperature) measurements zi. Kh(·) is a kernel
function with bandwidth h, and m̂(zi) is an estimate of the mean of x at
zi. For the latter, we can also use a kernel estimate in terms of

m̂(z) =

{
n∑
i=1

Kh(zi − z)xi

}{
n∑
i=1

Kh(zi − z)

}−1

. (3)

At (2) and (3), we may use different bandwidths or even different band-
widths for different components of the conditional mean and conditional
covariance for being adaptive in terms of smoothing (Yin et al., 2010). Also,
we may use a completely different method for estimating the mean m(zi),
for example, penalized regression splines (Neumann and Gertheiss, 2022).

3 Application to Data

The Test Bridge UniBw M, shown in Figures 1 and 2, is a 30-meter-long
steel composite bridge on the grounds of the University of the Bundeswehr
in Munich (UniBw M) (Jaelani et al., 2022). A joint group from Helmut
Schmidt University, UniBw M, and the Technical University Munich col-
lected the data. Among other things, from 11 March 2022 to 1 April 2022,
the acceleration was measured with eight accelerometers in 1000 hertz and
the air temperature in 1 hertz. The acceleration and temperature data were
resampled to 100 hertz with the resample function of signal R-package
which uses bandlimited interpolation (signal developers, 2013).
The conditional covariance of the acceleration data from the Test Bridge
UniBw M is estimated as in Equation (2) with p = 8 acceleration sensor
and bandwidth h = 2.5. To estimate the local mean of x at zi, we use
the Nadaraya-Watson kernel estimator as in Equation (3) with bandwidth
h = 1.5.
Figure 3 shows the conditional covariance for six different temperatures,
z ∈ {−5, 0, 5, 10, 15, 20} in Celsius. There are small structural differences
between the conditional covariances. These differences can be seen better
if we have a look at the conditional covariance (or conditional correlation)
as a function in z. Therefore, Figure 4 shows the conditional correlation as
a function in z for z ∈ [−5, 20]. We can see that the correlation peaks at
−5◦C and then approaches zero for increasing temperatures. So for negative
temperatures the sensors have a large (to small) correlation and nearly none
for positive temperatures.
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FIGURE 3. Estimates of conditional covariances for z ∈ {−5, 0, 5, 10, 15, 20}
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FIGURE 4. Estimated conditional correlations as function in temperature
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1 Bayesian probit models

In this paper, we propose latent class probit models for the classification
of decider preferences without requiring the explicit specification of the
number of classes included in the model. Commonly rooted in the random
utility framework, probit models assume that deciders assign utility values
to discrete choice alternatives and seek to maximize them (Train, 2009).
The utilities are modeled as a linear function of observable and unobserv-
able factors, where the latter are assumed to follow a multivariate normal
distribution. Specifically, decider n’s choice ynt ∈ {1, . . . , J} at occasion t
is explained through a matrix Xnt of choice characteristics as

ynt = arg maxUnt, Unt = Xntβ + εnt, εnt ∼ N(0,Σ). (1)

In the following, we assume that (1) has been normalized for level and scale
(e.g., by taking utility differences w.r.t. a base alternative and fixing one

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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error-term variance, cf. Train, 2009, Section 5.2). Bayesian inference of the
model parameters requires the computation of the posterior density

Pr(β,Σ | y,X) ∝ Pr(β,Σ)× L(β,Σ | y,X). (2)

For the prior Pr(β,Σ), it is convenient to employ independent conjugate
distributions, i.e. the normal distribution for β and the inverse Wishart
distribution for Σ. The probit likelihood is formed as the product of inde-
pendent multinomial distributions

L(β,Σ | y,X) =
∏
n,t

Pr(ynt = arg maxUnt). (3)

Evaluating (3) requires numerically expensive computations of the normal
cumulative distribution function due to the error specification in (1). In-
stead, we augment the latent utilities (Unt)n,t as additional parameters
(Imai and van Dyk, 2005), following truncated normals with truncation
points determined by the observed choices (ynt)n,t. This yields a straight-
forward and numerically fast Gibbs sampling scheme to approximate (2).
The {RprobitB} package (Oelschläger et al., 2022) implements the Gibbs
sampler in R, including the latent class extension presented in the following.

2 Preference classification

To incorporate preference heterogeneity, we model random variation in the
coefficient vector β across deciders using a Gaussian mixture with C classes:

βn ∼
C∑
c=1

scN(bc,Ωc), (4)

where the weights (sc)c a priori are assumed to follow a Dirichlet distri-
bution with concentration parameter δ > 0. This approach has two inter-
pretations. First, it provides an arbitrarily good approximation of the true
underlying mixing distribution (Oelschläger and Bauer, 2021). Second, it
enables the classification of deciders with common expected preferences bc
and preference covariances Ωc, which is our focus below.
To avoid the need to a priori select the number C of classes included, we
impose a Dirichlet process prior DP (G, δ) on the distribution (4), where
(assuming conjugate priors for b and Ω) the base distribution G is formed as
the product of a normal and an inverse Wishart distribution. The Dirich-
let process directly integrates into the Gibbs sampling scheme by itera-
tively updating (bc)c and (Ωc)c using their posterior predictive distribu-
tions (Neal, 2000). The decider-specific assignments z = (zn)n to either
one of the existing classes c = 1, . . . , C or a newly formed class c = C + 1



Oelschläger and Bauer 551

are updated based on the conditional probabilities

Pr(zn = c | z−n, δ) = (N − 1 + δ)−1 ·

{
|{z−n = c}| c = 1, . . . , C,

δ c = C + 1,
(5)

where z−n denotes the vector z excluding the n-th element, and N is the
total number of deciders.
Although explicit specification of C is no longer required, there is still an
implicit specification through the selection of a value for the concentration
prior δ. However, in our simulation study (Table 1), we found that the
impact of δ on (5) diminishes as N increases, resulting in stable inference
of the underlying class number.

TABLE 1. Median C for varying N and δ with standard deviations in brackets.
Choice data were simulated based on the estimates reported in Table 2.

δ = 0.1 δ = 0.5 δ = 1 δ = 2 δ = 10

N = 100 1 (0.33) 2 (0.62) 2 (0.68) 3 (0.79) 4 (1.28)
N = 1000 3 (0.15) 3 (0.54) 3 (0.50) 4 (0.78) 5 (1.25)
N = 6174 3 (0.22) 3 (0.40) 3 (0.55) 3 (0.77) 4 (1.10)

3 Chess players’ propensity for risk-taking

The latent class probit model is well-suited for analyzing discrete choice
behavior in settings that feature different groups of deciders with hetero-
geneous preferences. For a demonstration, we apply the model to classify
chess players according to their risk-taking propensity, given that we can
expect the presence of both risk-affine and risk-averse players. We further
compare the model results to those obtained from the basic probit model
from Section 1.
Our application is based on data from an online tournament hosted on
the platform www.lichess.org (Lichess API, 2023), where N = 6174 par-
ticipants played multiple chess games with a time limit of one minute per
game. The time limit is consumend when it is the player’s turn to make
a move. A player whos time runs out looses the game automatically. Be-
fore the start of each round, players were presented with a risky decision:
they could trade half of their clock time for the chance to earn one addi-
tional tournament point on top of the base score of two points if they won
the game. Factors that influenced this decision include the player’s rating,
whether they had the first-move advantage, remaining tournament time,
winning streak (which yielded extra points), whether the player opted for
the risky option in the previous round, whether they had lost in the previous
round, and the rating difference between the player and their opponent.
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TABLE 2. Change in utility for taking the risky option (ceteris paribus). Re-
ported are the means of the marginal posteriors with standard deviations in
brackets.

Factor Latent class probit Basic probit

Intercept -2.05 (0.03) -1.94 (0.01)
Rating -0.11 (0.01) -0.08 (0.01)
Having first move -0.04 (0.02) -0.02 (0.01)
Minutes remaining 0.04 (0.01) 0.04 (0.01)
On a winning streak -0.27 (0.03) -0.21 (0.02)
Took risk last round 1.21 (0.02) 1.82 (0.02)

Class 1 Class 2 Class 3

Proportion 54% (0.03) 36% (0.04) 10% (0.03)
Lost last round -0.98 (0.09) 0.03 (0.08) 1.10 (0.18) 0.18 (0.01)
Rating difference 0.10 (0.02) 0.98 (0.06) 1.65 (0.22) 0.52 (0.01)

Both models were fitted using 5000 Gibbs iterations with a “burn-in” of
50%, the results are summarized in Table 2. The latent class model with
concentration δ = 1 converged to three classes that characterize different
types of players:

� Type 1 players are risk-averse, rarely choosing the risky option against
lower-rated opponents or after losing in the previous round.

� Type 2 players decide independently of the previous game’s outcome.

� Type 3 players take more risks, with a higher likelihood of choosing
the risky option after a loss and favoring it against weaker opponents.

Using the relative frequencies of the class allocation z, we can classify each
player. For example, the tournament winner is of type 2 with a probability
of 78%, while the runner-up is of type 1 with a probability of 94%.

4 Discussion

The proposed latent class probit model reveals heterogeneity in preferences
that is not accessible via the basic probit model. We use a Dirichlet process
to conduct a latent class analysis without explicit specification of the class
number. For illustration, we applied the model in the context of chess and
identified three types of players (cf. Figure 1). Considering the frequency
of taking the risky option alone is not a sufficient indicator for risk-taking
propensity, as indicated by the strong overlap of the class-wise kernel den-
sity estimates depicted in Figure 2. Further analysis is required how the
results from Table 2 generalize to other chess tournaments, and how the
model can be applied in other areas of preference heterogeneity.
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Abstract: Additional to the usual dimensions of an aircraft trajectory (longi-
tude, latitude, altitude), it is often valuable to consider weather dimensions when
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We present the steps to perform kriging of wind speed values on pressure levels
with drift and anisotropy. Focus is made on the spatial dimension.
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1 Motivation and problem statement

For a given flight, the position of an aircraft is recorded for a finite set
of observation times. This indexed set of positions is interesting but may
be an incomplete summary of the flight. Indeed, knowing the experienced
weather at each observation time may help to better understand the dy-
namics of fuel consumption or noise emission. The goal of this work is to
associate each point of a trajectory with a weather value, so that experi-
enced weather during the flight is a piece of information that can be used
in further statistical analyses.
Past weather data are not available at any instant in time (if only for storage
reasons). Rather, weather data are processed so that a three-dimensional
weather grid is available every hour. Because most flights in Europe last
more than an hour, the task of matching weather values typically involves
several weather grids as schematized in Figure 1.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Adding weather data to a flight departing from Toulouse-Blagnac
(LFBO) and landing at Paris-Orly (LFPO) in March 2015 may involve at least
three weather grids.

Formally, this problem is often tackled as an interpolation or spatio-
temporal prediction task. This task is common in environmental sciences
as testifies the review of spatial interpolation methods written by Li and
Heap (2014).
In this work, a focus is made on the spatial aspect of the problem. In other
words, a simple rule is adopted for the time dimension: for each point of a
trajectory, the closest weather grid in time is used to perform the spatial
interpolation. The interpolation problem boils down to a three-dimensional
kriging problem involving an unknown drift and anisotropy. The solution
is detailed in the sequel.

2 Raw data, scope of the study

Two data sources are used in the paper.
Trajectory data are taken from the R&D data archive that contains more
than 18 million flights as of January 2023. The data are collected by Euro-
control from all commercial flights operating in and over Europe. Data are
available for 4 months each year: March, June, September and December.
Weather data are taken from ERA5 hourly data on pressure levels. ERA5 is
the fifth generation European Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis for the global climate and weather.
We focus on the interpolation of the three weather grids presented in Fig-
ure 1. The weather variable of interest is the horizontal wind speed (ex-
pressed in m.s−1) for the flight departing from Toulouse-Blagnac (LFBO)
and landing at Paris-Orly (LFPO) in March 2015. For 23 pressure levels,
horizontal wind speed values are given on a 0.25◦×0.25◦ longitude-latitude
grid. The weather grid on which kriging is done is three-dimensional. For a
single weather grid, there are 57 (longitude values)×41 (latitude values)×
23 (pressure values) = 53, 751 wind values.

3 A geostatistical framework

3.1 Dealing with projection and pressure levels

Raw weather data are given on a three-dimensional grid, often called a
region of interest, commonly denoted D in geostatistics. Projecting is a safe
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FIGURE 2. Weather grid n°1 giving wind speed values on 2015-03-01 05:00:00.

option when working with spatial data coming in longitude and latitude
coordinates. It ensures that all statistical quantities based on the Euclidean
distance are accurate. To safely use the Euclidean distance, pressure levels
(in hectopascals) must be converted to altitude values in meters.
To go from a pressure level p to an altitude h in meters (m), the following
formula is provided by the National Oceanic and Atmospheric Administra-
tion (NOAA):

h =
145366.45

[
1−

(
p

1013.25

)0.190284]
3.281

.

It is based on the International Standard Atmosphere (ISA). The resulting
grid once the two steps are performed (projection, conversion) is given in
Figure 2. The Lambert 93 conformal conic projection is used as it is a very
popular option for flights over Metropolitan France.

3.2 Mathematical framework

Every hour, raw data come as a collection of n regionalized values denoted
{z(si), i = 1, ..., n}. Each location s on D is viewed as the realisation z(s)
of a random variable Z(s). Values are said to be regionalized because they
exhibit some spatial correlation. The family of real-valued random variables
{Z(s), s ∈ D} is traditionally called a spatial random field. In the sequel, we
assume that the first moment as well as the usual second-order moments of
the random field are well-defined. Contrary to usual multivariate statistics,
there is only one realization of the random field making inference impossible
without some assumptions. Geostatistics often relies on the second-order
stationary hypothesis. The hypothesis is as follows:

1. The expectation exists and is constant, and therefore does not depend
on the location s: µ(s) = µ.



Perrichon et al. 557

2. The covariance exists for every pair of random variables, Z(s) and
Z(s + h), and only depends on the vector h that joins the locations
s and (s + h), but not specifically on them: C(Z(s), Z(s + h)) =
C(h), ∀s ∈ D, ∀ h ∈ Rd such that s+ h ∈ D.

3.3 A drift violates the second-order stationarity assumption

The second-order stationarity assumption doesn’t hold for wind data as the
mean of the random field depends on location. It is a drift problem. This
smooth systematic non-random variation should be taken into account. To
do so, the random field is broken down into the sum of two components,
Z(s) = µ(s) + ε(s), where µ(s) denotes the unknown drift and ε(s) the
stochastic part that can be treated as second-order stationary.
Parametric models to the drift are often fit to detrend the data before at-
tempting the analysis of the spatial correlation structure existing in the
residuals. This approach is called residual kriging by Montero et al. (2015).
This approach has been historically studied by Volpi and Gambolati (1978)
through numerical simulations and applied to the mapping of an hydraulic
head field of three major aquifers underlying the Venetian lagoon by Gam-
bolati and Volpi (1979). Regarding our application, a quadratic trend has
been found to be satisfactory to model the horizontal wind speed drift.
Characterization of the spatial dependence in the residuals relies on the
empirical (or experimental) semivariogram. Note that the variogram of the
random field is defined as the variance of the first differences of the random
field:

2γ(si − sj) = V(Z(si)− Z(sj)), ∀si, sj ∈ D.

The function γ is called the semivariogram. In the case of second-order
stationarity, the covariance function and the semivariogram are equivalent
when it comes to defining the structure of spatial dependence displayed by
the phenomenon. One reason for which the semivariogram is preferred to
the covariogram is that it does not require the knowledge of the mean of
the random field.

3.4 A key aspect: anisotropy

A given empirical semivariogram may not meet the theoretical properties
of a valid semivariogram. These theoretical properties are given in most
textbooks in geostatistics. The so-called structural analysis step is then
concerned with the fitting a valid model to the empirical semivariogram.
This step is necessary to make valid spatial predictions. Valid models are
often isotropic. Isotropic covariance functions only depend on the distance
between the locations s and s+ h as opposed to anisotropic ones. Regard-
ing wind data, the dependence between Z(s) and Z(s + h) is obviously a
function of both the magnitude and the direction of h. General anisotropy
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FIGURE 3. Estimated horizontal and vertical semivariograms on the residuals
on 2015-03-01 05:00:00. A sample of 10,000 points (drawn at random out of
53,751 locations) is used in the estimation of the semivariograms to improve
the computation time. The spatial dependence decreases rapidly in the vertical
direction.

models have recently been studied by Allard et al. (2015). In practice, ge-
ometric anisotropy is the only one that can be corrected using a linear
change of coordinates. Indeed, geometric anisotropy is obtained by some
stretching of an isotropic model. Speaking in terms of semivariogram, geo-
metric anisotropy is characterized by:

γ(h) = γiso(∥Ah∥2)

where the matrix A defines the transformation from the initial space to the
isotropic space. A linear transformation of the coordinates in enough to use
an isotropic model. As put by Chilès and Delfiner (2012), the matrix A is
usually written

A = TRθ3Rθ2Rθ1

where T =

b1 0 0
0 b2 0
0 0 b3

 is matrix of scaling factors and Rθ3 , Rθ2 , Rθ2

are rotation matrices (see Chilès and Delfiner (2012), p. 99). Estimating
anisotropy parameters is usually done with a directional semivariogram. In
R3, taking anisotropy into account is key for good predictions because the
vertical spatial dependence usually evolves very differently as compared to
the horizontal one.



Perrichon et al. 559

FIGURE 4. Geostatistical predictions of the wind speed values along the raw
trajectory.

4 Results

For each grid, the trend is taken into account using Ordinary Least Squares
(OLS). The horizontal and vertical semivariograms are then estimated on
the residuals. As can be seen in Figure 3, a strong anisotropy should be
taken into account, specifically in the vertical direction for which the spa-
tial dependence is rapidly decreasing. Once corrected, predicted values are
computed. Predicted wind values for the flight are shown in Figure 4. Note
that the 95% confidence intervals only make sense if a Gaussian assumption
holds for each weather grid. Confidence intervals are pointwise.
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Abstract: In this paper we give a proposal how to take the effect of wind on
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1 Introduction

About 10 years ago we investigated the effects of weather parameters (pre-
cipitation, temperature) on avalanche accidents, see (Pfeifer, Höller 2014).
We also tried to take into account the effect of wind (speed/direction). In
a recent paper we used spatial reanalysis data of ERA 5 in order to model
the effects on basis of municipalities. This turned out to be not feasible
because of the complex terrain in the alps. As a substitute we used the
data of 3 weather stations which lead to some conclusions (Pfeifer, Höller
2021).

2 Methods

The aim of this paper is to build a spatial wind model; one possibility is
to use INCA wind fields (Integrated Nowcasting through Comprehensive
Analysis) such as previously proposed (Geosphere Austria, 2022). But tak-
ing into account that historical data are only available on basis of weather
station data, we try to calculate daily wind field data for our own according
to:

� a 3 dimensional wind model assuming mass conserving and incom-
pressible flow
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� with boundary conditions:

– digital elevation data model (DEM) on a 100m resolution, 3D
mesh model

– wind velocity/speed equal to zero normal to the bounding sur-
face

– wind of weather station (determined by latitude and longitude)
data in 2 dimensions

resulting in an elliptic partial differential equation. A numerical solution is
calculated within the ‘finite element model’ framework.
As a consequence we are able to calculate the wind load potential (cm/day;
see Conlan and Jamieson, 2016) dependent on the velocity v, the direction
of wind θwind and aspect θaspect of the surface on each point of the terrain:

wind load =
v3

125
· cos|θwind − θaspect|

Please note that the wind load potential can be positive/negative depending
on the lee/luv side of the terrain. For objective reasons, we restrict the
calculation to alpine terrain (sea level ≥ 1800m).

3 Results and Discussion

In this paper we calculate a wind field based on the weather station ‘Galzig’
around the municipality ‘St. Anton am Arlberg’. Looking at daily back-
country avalanche accidents we observe 54 accidents within the winter pe-
riods 1993/94 – 2011/2012 in this region . For illustration purposes Figure
1 shows the case of west wind (∼ 10 m/s), which turned out to be the pre-
dominant wind direction of the weather station ‘Galzig’ (red point). We,
however, had a focus on wind load larger then zero – ranged from black
(low) to white (high) in Figure 1.
If we look at the daily number of avalanche accidents of the municipality ‘St.
Anton am Arlberg’ the boxplots of Figure 2 show a positive effect of wind
load on the number of accidents in this region. Calculating a corresponding
Poisson model we observe a significant result (effect=0.05856, p=0.001).
Finally, maps just as Figure 1 are useful in the snow avalanche science
community in order to recognize areas of danger in alpine terrain. However,
it is necessary to compute maps of this kind in a more comprehensive way.
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FIGURE 1. Wind and wind load Galzig/St. Anton a. Arlberg ranged from black
(low) to white (high)
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FIGURE 2. Number of avalanche accidents (‘St. Anton am Arlberg’) dependent
on wind load > 0
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1 Introduction

The outbreak of Covid-19, which was declared a pandemic by the WHO
in March 2020, greatly impacted and changed the lives of many people in
various ways. From a political perspective it is important to monitor and
understand the virus and its development to ensure that the current pan-
demic management remains effective. In Austria, the number of positive
Covid-19 tests (i.e. the human signal) served as the most important dis-
ease monitoring indicator up until recently. However due to the decreasing
number of conducted tests, an alternative monitoring of wastewater with
respect to virus copies related to Covid-19 (i.e. the wastewater signal) is
considered now. The goal of this paper is to analyse data obtained from
wastewater measurements to identify time trends and factors that influence
the amount of virus copies found in the wastewater. To achieve flexible mod-
elling of the wastewater signal Generalized Additive Models for Location,
Scale and Shape (GAMLSS) proposed by Rigby and Stasinopoulos (2005)
are employed.
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2 Data

The data set consists of N = 5180 observations taken at n = 32 Austrian
wastewater treatment plants from 2020-09-28 to 2022-10-10. The variable
of interest is the wastewater signal with values on R+ and higher values
corresponding to a higher virus concentration in the wastewater. Figure 1
shows the wastewater signal in four exemplary plants over time. There
is large heterogeneity across plants with respect to time points at which
measurements are taken, e.g. in the first plant measurements start much
later and in the second plant there are large gaps between measurements.

FIGURE 1. Wastewater signal for selected plants (points are measurements)

Of particular interest in analysing the development of the wastewater signal
over time are the effects of vaccination as well as the dominant virus variant,
since virus load is assumed to differ across virus variants. Data are available
on the percentage of persons who got one, two or three vaccinations. To
achieve dimension reduction we computed a vaccination score as the first
principle component of the three vaccination rates, which resulted as

vacc.score = 0.6490 · vacc1 + 0.6369 · vacc2 + 0.4162 · vacc3 (1)

The principle component score of the third vaccination rate is smaller than
those of the first and second which are almost identical and the explained
variance is over 90 %. Figure 2 shows time series for the three vaccination
rates as well as the composite score.
The dominant virus variant was categorised with categories Alpha-Beta,
Delta, Omicron-1-2, Omicron-4-5 and rest/unknown. The categorisation
of Omicron in subcategories Omicron-1-2 and Omicron-4-5 is based on
their genetic distance which was considered large enough to justify separate
effects.
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FIGURE 2. Time series of vaccination rates and the vaccination score for 32
wastewater plants.

Additional information on the laboratory that analysed the wastewater as
well as the federal state are available and used as control variables.

3 GAMLSS Models for the Wastewater Signal

In a GAMLSS model the response variable yi, i = 1, . . . , n is modelled
conditional on a vector of covariates xi as a realization of a distribution D
that is not restricted to the exponential family,

yi|xi ∼ D(θi). (2)

For the distributional parameters θi = (θ1,i, . . . , θk,i)
′ an additive model is

specified as

gk(θk,i) = ηθk,i
= fθk,1(xi, βθk,1) + · · ·+ fθk,J(xi, βθk,J), (3)

where gk(·) is an invertible, twice-differentiable link-function and the func-
tions fθk,j(·), j = 1, . . . , J can be either parametric or nonparametric
smooth functions, e.g. modelled with splines.
To model the wastewater signal yit in plant i = 1, . . . , n at time point
t = 1, . . . , Ti we considered several GAMLSS mixed models.
The first two models are Gamma regression models with distributional
parameters θit = (µit, σit)

′, where µit is the mean and σit is related to
the standard deviation. In the first model homoscedasticity is assumed,
whereas in the second also σit is modelled in terms of covariates:

yit ∼ G(µit, σit),

log(µit) = ηµit
, log(σit) = constant, (Gamma-1)

log(µit) = ηµit
, log(σit) = ησit

. (Gamma-2)
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The remaining two models use the Box-Cox t distribution, which has four
distributional parameters θit = (µit, σit, νit, τit)

′, where µit is the median,
σit is a centile-based coefficient of variation, νit relates to the skewness and
τit to the kurtosis of the distribution (see Rigby & Stasinopoulos (2006)
for further details on the BCT distribution):

yit ∼ BCT(µit, σit, νit, τit),

log(µit) = ηµit , log(σit) = ησit , νit = ηνit , log(τit) = ητit .

The first BCT model contains a random intercept only for the location
parameter, whereas the second also models the scale parameter with a
random intercept. We tried also models with random intercepts in all dis-
tributional parameters but encountered convergence problems and hence
did not consider these further.
Starting from a model where all covariates were included in all predictors,
model selection based on AIC was performed. Table 1 gives an overview of
the selected covariates in each of the linear predictors.

TABLE 1. Final models with selection based on AIC

Model vacc.score dom.var. controls γi AIC R2
Cox-S.

Gamma-1 µ µ µ µ 55621.98 0.7109
Gamma-2 µ µ, σ µ, σ µ 54615.26 0.7653
BCT-1 µ µ, σ, ν µ, σ, ν, τ µ 54387.79 0.7800
BCT-2 µ µ, σ µ, σ, ν, τ µ, σ 54330.10 0.7833

AIC is considerably larger for the simpler Gamma than the BCT models.
Moreover, for both Gamma models the wormplots in Figure 3 indicate the
need for kurtosis modelling, whereas the BCT models provide an adequate
fit. Based on the AIC the best model is BCT-2, implying that there is
substantial variability concerning the scale parameter with respect to the
wastewater treatment plants.
Figure 4 shows effect plots for the BCT-2 model. The effect of the composite
vaccination score on the wastewater signal is nonlinear and decreases over
most of its range. Based on the estimated functional relationship, it can be
stated that a higher vaccination rate corresponds to a lower signal in the
wastewater.
Also the dominant virus variant has a significant effect on the median of the
wastewater signal. It is lower when Alpha-Beta or Delta are the dominant
virus variant than for both the Omicron-1-2 as well as the Omicron-4-5
subvariant. The dominant virus variant also has a significant effect on the
scale parameter, which is higher for the variant group rest/unknown than
all the others. This is likely due to the fact that this category contains
several virus variants.
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FIGURE 3. Wormplots of different GAMLSS models

FIGURE 4. BCT-2: Effect plots of vaccination rate and dominant variant

Figure 5 displays the distribution of the random intercept for both distri-
butional parameters of the best model (BCT-2) indicating that there are
pronounced differences across wastewater treatment plants with respect to
the median as well as the coefficient of variation.
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FIGURE 5. BCT-2: Random Intercepts for µ and σ. Wastewater treatment plants
are ordered with respect to the random intercept for the median.

4 Conclusion

The more complex BCT models clearly outperformed the simpler Gamma
mixed-effects regression models. The vaccination rate and the virus variant
are both relevant factors for modelling the wastewater signal.
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1 Introduction

Nonparametric methods to evaluate students’ performance have been pro-
posed by some authors. Maia et al. (2016) used test statistics based on
quasi U-statistics looking at the entrance exam and the grade point aver-
age (GPA) to verify differences in academic performance according to sex
and type of High School; Pinheiro et al. (2020) treated the problem using
multivariate analysis and considered the grades of each of the courses taken
by the students using tests based on quasi U-statistics.
Here, we will use a modified version of Theil-Sen regression estimators
(Wilcox, 2021) to evaluate the relationship between the Entrance Exam
Score (EES) and the grades in each course. We will focus on data from
engineering major students and the performance in Calculus I (MA111)
according to the EES in Math (EESMath) and Physics (EESPhys) and
type of HS (Pr-Private x Pu-Public). We used as covariate the average
of the EES in Math and Physics subtracted by its median, i.e., Xi =
(ESSMath + ESSPhys)/2 and (Xi −median(X)).
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According to Wilcox (2021), a conventional linear regression analysis with
this type of data may result in some problems. For instance, low power of
the tests and the assumption of homocedasticy may not hold, since we have
many outliers. Therefore, more robust estimators, such as L1 regression
would be a more suitable method. However, we have another problem on
this dataset, which is a high number of ties. Wilcox et al.(2013) point out
that in the presence of too many ties, some robust estimators may have a
poor performance in terms of the Type I error, even with big sample sizes.

2 Methods

Let Zi(ak) = (Zi(ak1), . . . , Zi(akLi))
⊤ be the vector of grades of the i-th stu-

dent of class/major k, who entered at year a. Let j = 1, . . . , Li be the index
indicating the course taken by student i, with Li being the total number
of courses taken by the student. Note that even though the components
of Zi(ak) are theoreticaly continuous random variables, but in practice, we
observe discrete random variables. Let Yi(akj) be the discrete grades of
student i. For instance, Yi(akj) ∈ {0.0, 0.1, 0.2 . . . , 10.0}, that is,

Yi(akj) = 0.0 if Zi(akj) ∈ [0.0, 0.05);
Yi(akj) = 0.1 if Zi(akj) ∈ [0.05, 0.15);

...
Yi(akj) = 9.9 if Zi(akj) ∈ [9.85, 9.95);
Yi(akj) = 10.0 if Zi(akj) ∈ [9.95, 10.0].

Now, define the following models:

(I) Yi(akj) = β(akj)0 + β(akj)1Xi(akj) + ϵi(akj), i = 1, 2, . . . , n(akj);

(II) Yi(askj) = β(askj)0 + β(askj)1Xi(askj) + ϵi(askj), i = 1, 2, . . . , n(askj);

(III) Yi(aj) = β(aj)0 + β(aj)1Xi(aj) + ϵi(aj), i = 1, 2, . . . , n(aj);

(IV) Yi(asj) = β(asj)0 + β(asj)1Xi(asj) + ϵi(asj), i = 1, 2, . . . , n(asj);

For student i, a ∈ {2009, 2010, . . . , 2015} is the year of entrance; k ∈
{1, 2, . . . , 6} the majors: Agriculture Engineering (1), Civil Engineering (2),
Food Engineering (3), Computing Engineering (4), Electric Engineering (5)
e Mechanical Engineering (6); j ∈ {1, 2} the courses Calculus I (1) and Lin-
ear Algebra (2); s ∈ {1, 2} is the type High School (HS): Private (1-Pr) or
Public (2-Pu).
For models II and IV, the predicted variable Xi(·) may be separated in two
groups according to type of HS (1-Pr and 2-Pu). The parameters β(·)0 and
β(·)1, are the intercept and slope for group (·), respectively. ϵi(·) is stochastic
with distribution free.
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If there is no difference between EES effects among majors, we can ignore
the majors and use model III. Model IV is used to test whether or not there
is difference between type of HS, ignoring the majors, i.e, H0 : β(a1j)ℓ =
β(a2j)ℓ, ℓ = 0, 1.
Table 1 shows the number of ties, nties, and the number of outliers, nout,
for the grades in Calculus I (MA111) in years 2009 to 2012 to illustrate
some of the problems of the dataset. For years 2013 to 2015, the pattern
remains the same. The average of relative frequency of ties (fties = nties

n )
for Calculus I is 54.96%. To detect outliers we used the method described
in Carling (2000).

TABLE 1. Number of ties and outliers on the grades of Calculus I

2009 2010 2011 2012
nout nties n nout nties n nout nties n nout nties n

Agriculture Eng. 0 28 62 0 28 60 0 27 62 0 24 55
Civil Eng. 2 43 76 1 46 77 6 39 78 6 41 78
Food Eng. 4 66 114 9 54 106 5 54 99 0 52 98
Computer Eng. 5 86 132 3 88 137 2 90 133 7 93 134
Eletric Eng. 5 57 91 7 45 93 1 53 92 3 52 101
Mechanical Eng. 7 42 87 5 55 85 3 43 84 3 41 81

Since the distribution of the grades (Yi(·)) has severe number of ties, we will
use a more robust estimator (Theil, 1950 and Sen, 1968) with its modified
version (Harrell and Davis, 1982). Frequently known by Theil-Sen esti-
mator of the slope (βTS), it is the median based on all slopes associated
with any two distinct ponts in the sample (Theil, 1950; Sen, 1968; Wilcox,
2021). Comparing it with the least square estimator, we could say that the
estimated line obtained by βLS is such that ρ(Xi, ϵi) = 0, where ρ is the
Pearson correlation coefficient, while the line obtained by Theil-Sen is such
that τ(Xi, ϵi) = 0, where τ is the Kendall’s tau coefficient (Kendall, 1938).
A modified version of the Theil-Sen estimator is the Harrell-Davis esti-
mator (Harrell and Davis, 1982).

In fact, the estimate of the slope is β1(TS) = θ̂0.5 . The intercept is estimated

by the Harrell–Davis estimate of the median based on Y1− β̂1X1, . . . , Yn−
β̂nXn. This modification will be called the Thiel-Sen-Harrell-Davis (TSHD)
estimator.
Note that the choice of the intercept does not affect the Kendall’s tau
coefficient (τ), but it makes the median of the residuals to be approximately
zero because τ is a U-statistic symmetric around zero.
To avoid problems caused by severe number of ties in the response variable,
the modified version in the estimation procedure of Theil-Sen estimator,
TSHD estimator, will be used here. The median of the slopes of any two
points in the sample will be replaced by their respective order statistics
(Wilcox et al., 2013).
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To test whether the effects of EES are different across the different majors,
we tested H0 : β(ak1)ℓ = β(ak′1)ℓ, ∀k ̸= k′ e ℓ = 0, 1 using a Bootstrap
procedure with B = 1000 as the number of bootstrap samples. For details
see Wilcox (2021). Since there was no difference on the effect of EES among
the majors, we adjusted models like Model III.
Figures below shows the point estimates and Confidence Intervals (CI) for
model I for students who took Calculus I from 2009 to 2015. Looking at
Figure 1, one can see that students with major in Agriculture Engineering
have median performance in Calculus I worst than all the other Engineering
major students and the results were all significant by a 0.05 level.
Adjusting model IV, we found that the EES were significant for Pr HS
and Pu HS. Using model IV, we also tested the hypothesis of differences
in the intercepts and slopes according to type of HS (1-Pr x 2-Pu), i.e.,
H0 : β(as1)ℓ = β(as′1)ℓ, with ℓ = 0, 1. There are significant differences on
the intercepts (for years 2009, 2010, 2013 and 2014) in the performance
of Calculus I according to type of HS (Pr x Pu), with the median of the
predicted grade in Calculus I greater for Pr HS than for Pu HS.

FIGURE 1. Point estimates and CI for model III: Intercepts for Calculus I

FIGURE 2. Point estimates and CI for model III: Slopes for Calculus I

Acknowledgments: Barreto, F. thanks CAPES-Coordenation for the Im-
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Abstract: Joint Models for longitudinal and time-to-event data are an estab-
lished modelling tool, yet variable selection tools for this model type are still
scarce. Therefore, we apply the Normal Beta Prime Spike and Slab prior for
effect selection to a Bayesian Structured Piecewise Additive Joint Model in a
simulation study. The resulting effect selection is satisfactory and might prove a
versatile tool for analysts.
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1 Introduction

Joint models for longitudinal and time-to-event data are an established
tool to analyse data simultaneously capturing information on a longitudi-
nal outcome and an event outcome., At the same time choosing the cor-
rect variables in their correct effect is crucial to avoid bias.The statistical
toolbox knows various methods from frequentist and Bayesian statistics as
well as statistical machine learning. Yet their extension to such a complex
model type as the joint model is not straightforward., Thus the few meth-
ods existing employ versions of a penalized likelihood approach such as the
LASSO or broken adaptive ridge and are tailored to specific data problems.
A notable exception is variable selection through gradient boosting (Gries-
bach et al., 2023)., What these methods share is the relative simplicity of
employing only linear models. On top, coefficients from prediction and allo-
cation optimized statistical boosting techniques lack variances. Therefore,
we suggest the use of a Bayesian approach able to perform not just variable

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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but also effect selection and the capacity to also be applied to structured
additive models: The Normal Beta Prime Spike and Slab (NBPSS) prior
(Klein et al., 2021)., The next section details the methodology behind joint
models and the NBPSS prior. Section 3 presents results of a first simulation
study to identify the prior’s performance and the last section gives a short
summary and outlook.

2 Methodological Background

A joint model traditionally consists of a potentially structured additive
mixed model for the longitudinal outcome and a proportional hazards (PH)
model for the time-to-event outcome. Since the equivalent counting-process
notation of the proportional hazards model as a Poisson model has proven
superior in performance in Bayesian joint models, we will consider the
time-to-event part as being piecewise additive (Rappl et al., 2023). The
formulation then takes the form

y(t) = ηl(t) + ηls(t) + ε, ε ∼ N(0, σ2
εI)

λ(t) = exp
{
f0(tj) + ηs + αηls(t)

}
, ∀ t ∈ (κj−1, κj ],

(1)

where η· are longitudinal (l), survival (s) or shared (ls) predictors respec-
tively. The latter also connect the two model parts via the association pa-
rameter α and must include random effects. Otherwise the predictors may
be specified to include linear, smooth and/or spatial effects represented in
matrix notation Zkγk with Z being the data design matrix and γk the
vector of corresponding coefficients. f0(tj) represents the baseline hazard
modelled over j = 1, . . . , J intervals of time t with boundaries (κj−1, κj ].
Effect selection then is performed via the NBPSS prior. This relies on the
reformulation of an effect Zγ = ϖZγ̃, where ϖ is an importance parameter
and γ̃ are standardized coefficients.
The standardized coefficients follow the generic prior

p (γ̃k) ∝ exp

{
−1

2
γ̃′
kKkγ̃k

}
I[Akγ̃k=0], (2)

which through the definition of Kk may represent any effect. The con-
straint Ak is chosen such that it represents the basis of the null space of
Kk, i.e. Ak = span(ker(Kk)), in order for the prior to be identifiable and
proper. This enables the NBPSS prior to discriminate between penalized
(smooth) and un-penalized (linear) effect components. Selection itself hap-
pens through the importance parameter, which is subject to the NBPSS
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prior of the form of the following Gamma-distribution:

ϖ2
k | δk, ψ2

k ∼ Ga

(
1

2
,

1

2rk(δk)ψ2
k

)
, ψ2

k ∼ InvGa(ak, bk),

δk | πk ∼ Bern(πk), πk ∼ Beta(a0,k, b0,k), rk(δk) =

{
rk > 0 δk = 0

1 δk = 1.

The model variance σ2
ε is a priori inverse-Gamma-distributed with

InvGa(aσ, bσ). The likelihoods follow a Normal and a Poisson distribution
respectively:

y ∼ N(ηl(t) + ηls(t), σ
2
εI), δj ∼ Poi(logλ(t)) ∀ t ∈ (κj−1, κj ].

Both methods are implemented in BayesX.

3 Simulation study and results

From the model in (1) longitudinal measurements y(t) for n = 200 indi-
viduals are generated over originally ni = 6 time points in the range of
t ∈ (0, 1) and an association of α = −0.3 with the predictors

ηl = 0.5 xl1 + f1(xl2),

ηls = 0.9 xls1 − 0.5 f2(xls2)− 0.5 xls3(t) + 0.4 t + b0 + b1 t and

ηs = 0.1 xs1 + 0.5 f2(xs2).

The non-linear functions used are f1(x) = 0.5 x+15 ϕ(2(x−0.2))−ϕ(x+0.4)
and f2(x) = sin(x). All covariates are simulated from a Uniform-U(−1, 1)
distribution with the covariates xs· of the survival predictor and xls· of the
shared predictor being time-constant and covariates xl· of the longitudinal
predictor and xls3 of the shared predictor being time-dependent. Further
the model variance is set to σ2

ε = 0.5 and the variances of the random inter-
cepts and slopes are set to τ21 = τ22 = 2. Survival times are generated with
a Weibull baseline hazard of form λ0(t) = pqtq−1 with scale p = 0.4 and
shape q = 1.5 and censoring applied at Ti = min(T ∗

i , 1) with an additional
artificial random sampling censoring for 50% of the censored individuals in
range Ti ∈ (0, 1)., In addition three non-informative covariates per predic-
tor are sampled from U(−1, 1) for variable selection. The study is carried
out for R = 100 replications and the results are evaluated as posterior
selection probability for each effect component.
Figure 1 illustrates the posterior selection probability of each effect com-
ponent. For the effects in the longitudinal predictor ηl selection is perfect
with correct identification of informative and non-informative components.
The selection of the survival predictor ηl and the shared predictor ηls is
not yet ideal. In the former case all non-informative components were cor-
rectly de-selected, but so were all others except for the linear component of
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FIGURE 1. Posterior selection probabilities of effect components when using the
NBPSS prior in a joint model. Black boxes belong to informative effects, yellow
boxes to non-informative effects.

the informative smooth effect. In the shared predictor linear components
of the informative variables were accurately selected, but the informative
smooth component was missed and instead the non-informative variables
were selected.

4 Results and outlook

Due to limited availability of variable selection mechanisms in joint models,
we have used the NBPSS prior as an effect selection mechanism in Bayesian
Structured Piecewise Additive Joint Models. A first naive application has
already yielded imperfect, but satisfactory results.
What remains to be tested now is what fine tuning is needed for the prior
to perform better in this setting. This constitutes a low-threshold option.
Another option would be adapting the functionality of the NBPSS prior to
better suit joint models.
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Abstract: The aim of this study is to identify the primary risk factors for lower
limb injuries in professional football players and compare the differences between
male and female athletes using Multivariate Survival Trees (MST). Firstly, longi-
tudinal data is collected for each player from several teams and seasons, including
their exposure time on the field, medical injury history, and periodic screening
tests. Then, a multivariate survival tree is applied to handle multiple covariates.
The MST approach requires minimal statistical assumptions and provides easily
interpretable prognostic rules. Finally, the analysis aims to produce trees that
can help determine relevant injury factors and compare the differences between
gender.

Keywords: Sports injury; Injuries risk factors; Multivariate survival trees.

1 Introduction

Sports injuries are a common occurrence in professional sports, often re-
sulting in severe consequences for athletes and their teams. In recent years,
there has been a growing interest in the prevention of sports injuries
through the use of statistical models. These models aim to identify the
key risk factors for injuries and develop personalized strategies to mitigate
these risks.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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To fully understand the risk factors associated with injuries, it is essential
to have a clear understanding of the explanatory variables collected. Several
types of variables are commonly collected for injury prevention, including
exposure time (the amount of time that a player spends on the field dur-
ing practice and competition), movement limitations and asymmetries (any
imbalances in strength or flexibility that may increase the risk of injury),
functional and strength parameters, Rating of Perceived Exertion (RPE),
or anthropometric data. These screening tests are used to monitor players’
functional and strength parameters, assess their physical fitness, and iden-
tify movement limitations and asymmetries of the lower limbs, which are
suspected to influence the risk of sports-related injury (Duke, S.R. et al.,
2017).
Our goal is to analyze the timing of injury occurrence and the factors that
may influence it, considering variables such as exposure time, training inter-
nal load, previous injuries, and functional strength parameters. By focusing
on the temporal aspect of injury risks, we aim to inform injury prevention
strategies (Nielsen, R. O. et al., 2019). Incorporating functional strength
parameters as covariates enables us to assess their impact on injury timing
and any gender differences. This approach provides a more comprehensive
understanding of injury risk factors and can inform targeted prevention
strategies.

2 Data and methods

We analyzed data from five professional football teams (three male and
two female) over four consecutive seasons (2017-2018 to 2020-2021). The
sample includes 141 male and 61 female football players who played at least
one season on their respective teams.
The R package injurytools (Zumeta-Olaskoaga, L., et al. 2022) was uti-
lized to preprocess the data, incorporating various functions for data struc-
turing and visualization of plots. Figure 1 shows a subsample of six players
from each cohort. The figure represents the exposure time (horizontally),
where the red cross indicates the injury date and the blue circle the recov-
ery date. Moreover, the data used to generate the survival analysis dataset
includes screening tests captured from periodic health examinations, play-
ers’ accumulated load over time, and health records containing information
about exertion perception tests and injuries across seasons. In a second step,
imputation of missing values is required. This is because not all players un-
dergo all screening tests each season. Therefore, the Multiple Imputation
by Chained Equation (MICE) method is applied, after preselecting 16 of
the original 397 physical test variables based on medical expert judgment.
Using the Permuted Mean Matching (PMM) method, and after completing
five iterations, the MICE method imputes the best value for each missing
observation, resulting in a complete screening dataset.
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FIGURE 1. Overview of the injuries of 12 players over time. The follow-up time
is split into each of the four seasons analyzed, represented with a different vertical
color in the graphs.

The method selected to model the data is known as Multivariate Survival
Trees (MST), which allows to define models using highly correlated data.
The procedure of fitting such trees is divided into three steps: i) growing
the initial tree by splitting nodes, partitioning the data into heterogeneous
groups; ii) pruning the tree generated in the first step, generating subtrees;
and iii) selecting the optimal size tree. For step i), three different meth-
ods are applied to handle the correlation within the variables: exponential
frailty, gamma frailty, and marginal approaches. Moreover, for the ii) and
iii) steps, control parameters are used: minsplit and minbucket, respectively.
The former avoids overfitting while controlling the minimum number of ob-
servations at each node, and the latter controls the minimum number of
observations required at the leaf node. The analysis is completed using the
package MST in R Statistical software (Calhoun, P. et al., 2018).

3 Results and concluding remarks

A selection of the optimal tree size was completed both for the female and
male cohorts for each of the three different methods applied to handle the
correlation within the variables. Figure 2 represents the best model gener-
ated using the marginal approach for each of the cohorts. The distinction in
the sample size in both genders makes the minsplit and minbucket control
parameters to be different for each of the groups. The time variable (x-axis)
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within the final nodes is represented by the accumulated workload, which
is the value of the time spent on the field (playing or training) multiplied
by the value of the perceived exertion scale (also known as Borg).

A

B

FIGURE 2. MST model results with the marginal approach. Figure (A) shows
the best-fitted tree for the female cohort and Figure (B) shows the male cohort
tree.

Both genders differ on the starting point node. Females start with the quan-
tification of the preceding injuries (previous injuries) and males, start with
the burden caused by those injuries (days missed). These starting point
variables only consider the timeframe of the season prior to the completion
of the screening test. For the female’s tree, the value of the hand-held dy-
namometer abductor exercise is the second splitting point, followed by the
abductor-adductor test and the measurement of the range of motion of the
hip. However, on the men’s tree, different variables have a higher effect on
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the results, combining hand-held dynamometer tests on other body parts
(e.g., hamstring) and core or range of motion values for the second and
third node levels. Both trees on Figure 2 are sorted such that each split to
the left has a lower risk of failure.
In conclusion, the use of survival trees to estimate the risk of lower limb
injuries has shown promising results. By incorporating functional strength
parameters as covariates, we were able to identify their impact on the tim-
ing of injuries and compare the effects between genders. This approach pro-
vides a more comprehensive understanding of the factors that contribute
to injury risk and can inform targeted injury prevention strategies. With
further research and validation, survival trees have the potential to become
a valuable tool for sports medicine professionals in assessing and mitigating
the risk of lower limb injuries in football and other sports.
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Abstract: Most model selection methods are based on a global measure of model
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1 Introduction

Model selection is an important step in statistical modelling because there
are usually many different possible models that can be used to represent
the data, and selecting the wrong model can lead to inaccurate predictions
or incorrect inferences. Most model selection techniques involve evaluat-
ing different models based on some form of global goodness-of-fit criterion
which is then penalized for model complexity. Traditional model selection
criteria such as AIC (Akaike, (1974)) and BIC (Schwarz, (1978)) focus on
goodness of fit for the response variable. Same is true for popular model
selection measures in a Bayesian paradigm, such as DIC (Spiegelhalter et
al. (2002)) and WAIC (Vehtari et al. (2017)).
On the other hand often one may be more interested in estimating or
predicting some specific parameters in the model or some quantities de-
rived from the response. Focused Information Criteria (Claeskens and Hjort
(2003)), select models based on precision of the estimates of the parameter
of interest (focus parameter). In this article we propose a simple Bayesian
analogue of the FIC.
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July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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2 Motivation: Modelling BMI using growth curves

Our motivating data-set comes from a data warehouse project by Danone
Nutricia Research. We have data on human infant growth (weight and
height), as well as background information such as country of birth, gender,
and birth weight. The data contains weight and height measurements for
around 1000 infants from 3 countries, recorded at several time points till
1 year of age. Our main research question is to see if there are differences
in the development trajectory of BMI among the birth-weight categories
(large, normal, small) of the infant, while accounting for country and gender
effects.
For modelling height and weight of infants several commonly used growth
curve models exist, and each of these models have a particular age range
where they perform best (Chirwa et al, 2014). Multilevel modelling is used
to account for the individual level effects. BMI has a deterministic rela-
tionship with weight and height, thus a joint bi-variate growth model for
weight and height will allow us to construct a model for BMI (Roy and
Lesaffre (2020)). In this context we want model selection techniques that
focus on BMI, a derived quantity of the responses.

3 The FIC paradigm

Focused Information criteria (FIC) are based on the mean square errors
(MSE) of a focus parameter of interest, instead of goodness of fit of the
responses. The FIC for a model M is the estimate for the MSE of the

focus parameter µ̂M , FIC(M) = ̂mse(µM ). Under the original version of
FIC as introduced in Claeskens and Hjort (2003, 2008) the FIC was calcu-
lated under a locally asymptotic framework and an assumed true unknown
data generating model. This was extended to a ”fixed wide model” frame-
work in Claeskens et al. (2019), which allowed for FIC to be applied to
complicated data structures including longitudinal models. A sufficiently
large and comprehensive wide model Y ∼ Fwide(Y ; θwide) is assumed to
replace the true model. All the variances and biases for calculating the
FIC are now calculated under this estimated wide model. Thus FIC(M) =
V ar

F̂wide
(µ̂M )+(E

F̂wide
(µ̂M )−µ̂wide)2, and FIC(wide) = V ar

F̂wide
(µ̂wide).

4 Proposed Bayesian FIC

In a Bayesian approach we simply replace the expected bias and variance
with their posterior counterparts. In analogous to the original FIC ap-
proach, we still use the parameter estimates from the wide model in place
of the true values of the parameter while calculating the bias. This the
Bayesian version of the FIC can be written as

BFIC(M) = V arM (µ̂M |X) + (EM (µ̂M |X)− Ewide(µ̂wide|X))2,

with EM (.|X) denoting the posterior expectation under the model M.
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5 Results

5.1 Simulation Results

We replicate the simulation framework for longitudinal models in Section
6 of Cunen et al. (2020). The 100 data-sets each has 20 groups with 15
observations in each, and 4 potential fixed and random effects (the wide
model M0. The four experiments each has a different focus parameters. We
refer the readers to Cunen et al. (2020) for the details. Figure 1 shows the
FIC for different focus parameters, models and simulated data-sets. (The
red crosses denote the models with least FIC for each data set.) We see
that in most cases the models M0, M1, and M2 are preferred by the FIC.
In contrast the frequentist version of FIC prefers mostly M1 and M2.
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FIGURE 1. FIC for 100 simulated data-sets.

5.2 Application to BMI modelling

We have longitudinal growth data (weight and height) for around 1000 in-
fants form 3 countries, Australia, Spain and Thailand. Together with the
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3 birth-weight categories, and gender this makes 18 subgroups. We are in-
terested in BMI trajectories vary among the 3 birth-weight categories. To
show the easy applicability of the proposed BFIC approach, we use two
approaches for modelling the BMI trajectory. First, we will use a joint bi-
variate growth curve model (the first order Berkey-Reed model (Berkey and
Reed (1987))) for weight and height, as in Roy and Lesaffre (2020). Sec-
ond, we will use generalized additive models (GAM) (Wood (2017)), with
smooths for both individual and group effects to model the BMI directly.
Since our main research question wants to know if there are significant
differences in BMI trajectory for the three weight categories, we use mean
BMI for each of the subgroups at 1 year mark as our focus parameter.

TABLE 1. Models used for BMI

Model 0 (wt, ht) ∼ sex : wt cat : country+
sex : wt cat : country : (t+ ln(t) + 1/t)+

(1 + t+ ln(t) + 1/tID)
Model 1 (wt, ht) ∼ sex+ wt cat+ country+

sex : (t+ ln(t) + 1/t) + wt cat(t+ ln(t) + 1/t)+
country : (t+ ln(t) + 1/t) + (1 + t+ ln(t) + 1/t|ID)

Model 2 (wt, ht) ∼ sex+ wt cat+ country+
(t+ ln(t) + 1/t) + ((1 + t+ ln(t) + 1/t|ID)

Model 3 (wt, ht) ∼ sex+ wt cat+ country+
country : (t+ ln(t) + 1/t) + (1 + t+ ln(t) + 1/t|ID)

Model 4 (wt, ht) ∼ sex+ wt cat+ country+
sex : (t+ ln(t) + 1/t) + (1 + t+ ln(t) + 1/t|ID)

Model 5 (wt, ht) ∼ sex+ wt cat+ country+
wt cat : (t+ ln(t) + 1/t) + (1 + t+ ln(t) + 1/t|ID)

Model 6 (wt, ht) ∼ sex+ wt cat+ country+
sex : wt cat : (t+ ln(t) + 1/t) + (1 + t+ ln(t) + 1/t|ID)

Model 7 (wt, ht) ∼ sex+ wt cat+ country+
wt cat : country(t+ ln(t) + 1/t) + (1 + t+ ln(t) + 1/t|ID)

Model 8 (wt, ht) ∼ sex+ wt cat+ country+
sex : country : (t+ ln(t) + 1/t) + (1 + t+ ln(t) + 1/t|ID)

Model 9 BMI ∼ s(t) + s(t|sex : wt cat : country) + s(t|ID)
Model 10 BMI ∼ sex+ wt cat+ country + s(t) + s(t|ID)
Model 11 BMI ∼ wt cat+ country + s(t) + s(t|sex) + s(t|ID)
Model 12 BMI ∼ sex+ country + s(t) + s(t|wt cat) + s(t|ID)
Model 13 BMI ∼ sex+ wt cat+ s(t) + s(t|country) + s(t|ID)

The wide model M0 is the fully saturated model with the intercept and
slopes all varying for the 18 subgroups. Models M1 −M8 used for com-
parison were sub-models of M0. These sub-models involves the intercepts
and slopes varying with different levels of grouping. Models M9 − M13

were GAMs used to directly model the BMI. Model M9 had group level
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smooths for all the 18 subgroups, as well as individual level smooths. Mod-
els M10 −M13 had group level smooths with different levels of grouping.
Refer to Table 1 for details of the models.
In this example we treat the expected BMI at 1 year for each subgroup as
the focus parameter of interest. Figure 2 shows the variance, bias square
and FIC for each of the 18 subgroups, as well as the average over the 18
subgroups. Model M8 has the best average FIC (1.026) among the chosen
models (in contrast the wide model has an average FIC of 1.331).
Focusing on the actual quantity of interest (BMI) allows us to choose a
simpler model than the fully saturated model. This provides other inci-
dental benefits like faster convergence in a Bayesian context. Moreover our
selected model shows that in the context of predicting average BMI at 1
year the birth weight categories do not influence the BMI development
trajectories (The slopes do not vary with birth weight category.) However,
Model M6, which included weight category as a factor was in a very close
second place (average FIC 1.054). In contrast the GAMs using smoothing
splines had worse FIC, and were thus not selected. This also shows the
validity of our approach of using two simple models for height and weight,
instead of going for a more complicated spline type model for BMI directly.
However, it should be kept in mind that the FIC procedure should not be
used for deciding whether certain factors actually effect the responses, as
a larger data-set or different focus parameters may have different results.
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FIGURE 2. Variance, bias, and FIC for average BMI at 1 year for 18 subgroups.

6 Conclusion

We have proposed an analogue to the FIC approach for model selection in
a Bayesian paradigm. One benefit of our suggested approach is that this
is applicable to a much wider class of models and more general classes of
focus parameters of interest than the original FIC approach. Any quantity
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for which we can get a posterior estimate can now be a focus parameter.
Also our proposed FIC avoids complicated Jacobian calculations specific
to each model and focus parameter, and can be easily calculated from the
posterior samples, and can be used to compare among widely different
classes of models. This is illustrated as the two categories of models we
used are, bi-variate growth models for weight and height, and GAMS with
group and individual level smooths for BMI.
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Abstract: Online open surveys are a popular source of information to comple-
ment epidemiological surveillance programs. Due to the absence of a sampling
protocol, open surveys typically yield to opportunistically sampled data. This
requires care when interpreting statistical modelling results, as these methods
commonly assume a randomised study design to underlie the data collection
process. It remains unclear to which extent such data, which usually lead to
spatio-temporal imbalanced samples, is useful to detect spatio-temporal trends
in epidemiological phenomena such as disease risk. We propose a simulation study
based on Flemish and Brussels COVID-19 symptoms data obtained via the Great
Corona Study, a Belgian large-scale, online, open survey operational throughout
the COVID-19 pandemic. We show the impact of opportunistic sampling on de-
tecting epidemiological trends when spatio-temporal modelling approaches are
considered. We find that traditional spatio-temporal disease mapping methods
often work well when sample sizes are large but tend to perform poorly when
substantial spatial and temporal data imbalance simultaneously occur.
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1 Introduction

Large-scale open, and often online, surveys have become a popular and
cost-effective means to gather epidemiological information. However, many
of these surveys lack a sampling protocol, as anyone interested in partici-
pating can provide data. Consequently, resulting samples are often termed

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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‘opportunistic’, in contrast to ‘randomised’. This distinction can be prob-
lematic because traditional models to analyse areal data as spatial and
spatio-temporal models typically assume a randomised sample obtained
through adherence to a study protocol.
Opportunistic samples can exhibit multiple data characteristics that are
suboptimal for data analysis, many of which are associated with strong
variability in individuals’ participation efforts. These characteristics include
survey incompleteness, underrepresentation of individuals with lower dig-
ital literacy, and preferential sampling, which occurs when the epidemio-
logical trend of interest and trends in sampling are stochastically related
(Diggle, P.J. et al. (2010)). Although model corrections for opportunistic
samples exist (e.g. Diggle, P.J. et al. (2010)), they are often difficult to
implement. Therefore, the standard methods are often still applied in such
circumstances, assuming that the large sample sizes will allow the detection
of the important spatial or spatio-temporal trends sufficiently well. How-
ever, the validity of this assumption remains uncertain, especially since
opportunistic samples typically result in geographical and temporal im-
balances in survey participation rates. The impact of such imbalances on
statistical inference and predictions is not yet well understood.
The current research is motivated by a case study that compared the spatio-
temporal incidence estimates based on two data sources: (i) confirmed
COVID-19 cases data collected by Belgian governmental agencies; and (ii)
COVID-19 symptoms based on self-reporting, collected via a weekly Bel-
gian online open survey, titled the Great Corona Study (GCS)(University of
Antwerp et al. (2020)). The case study, which is not reported here, showed
that despite the very large amount of self-reported symptomatic informa-
tion, the opportunistically sampled COVID-19 symptoms data provided
only, to a limited extent, valuable insights into the spatio-temporal trends
in COVID-19 incidences. There were strong suggestions that the oppor-
tunistic sampling nature of the data lay at the root of this problem.
A simulation study was therefore undertaken aiming at (i) assessing the
effect of imbalanced opportunistic samples and (ii) samples sizes when de-
tecting epidemiological insights through large-scale open surveys.

2 Methods

This study used two data sources collected during six weeks from the early
period of the Belgian COVID-19 pandemic (March 17- May 11, 2020): (i)
the daily test-confirmed cases reported by the Belgian Health Institute,
Sciensano, in all municipalities of two regions of Belgium, i.e., Flanders
and the Brussels-region; and (ii) the weekly counts of people experiencing
COVID-19 symptoms obtained from the GCS. The confirmed COVID-19
cases were temporally aggregated on a weekly level. We carried out this
study in three stages: (i) simulation; (ii) modelling; and (iii) comparison.
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In the simulation stage, we first defined distinct sampling strategies that
differed in the spatio-temporal balance of the sample and the total sample
size.
Regarding the spatio-temporal balance, we considered four scenarios: (i)
balance in time and space; (ii) balance in time but not in space; (iii) bal-
ance in space but not in time; and (iv) unbalance in time and space. Note
that scenarios (ii), (iii) and (iv) correspond to opportunistic samples. Con-
cerning the sample size, we started from the total sample sizes obtained
in each of the scenarios, which we multiplied with multiple constants (1/6,
1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5 and 6). Combining the four scenarios and the
different sample sizes led to 44 different sampling strategies to be compared.
Secondly, we specified the sample size for each municipality i at each week of
analysis t according to each sampling strategy. Thirdly, using these sample
sizes, we simulated, within each sample, the number of people experiencing
a symptom of COVID-19, assuming that the data-generating mechanism
is a binomial distribution with two parameters. (i) The sample size, Nit,
associated with one of the 44 sampling strategies, and (ii) the proportion
of occurrence, pit, corresponding to the proportion of COVID-19 cases ob-
served at each municipality and week, information obtained from the official
governmental reports. Finally, each sampling strategy was simulated 100
times, producing 4400 different datasets.
During the modelling stage, we analysed two types of data; (a) the weekly
observed COVID-19 cases from the governmental agencies and (b) each of
the simulated samples of people experiencing COVID-19 symptoms. We,
therefore, undertook a spatio-temporal modelling approach that use con-
ditional autoregressive smoothing across the spatial and temporal dimen-
sions, and a type I spatio-temporal interaction proposed by Knorr-Held
(2000).
Finally, in the comparison stage, we obtained incidence estimates from
the observed COVID-19 cases, as well as from each simulated sample of
people experiencing COVID-19 symptoms. Subsequently, we compared the
incidence estimates from the observed COVID-19 cases with the incidence
estimate from each simulated sample. Two metrics were used: (i) the corre-
lation coefficient and (ii) the proportion of agreement in the top 20 ranking
of highest incidences each week of analysis. Note that the comparison was
based on estimates from both modelling approaches. The correlation coeffi-
cient intends to measure to which extent the incidence estimates of people
experiencing COVID-19 symptoms, under different sampling strategies, can
capture the actual overall trends of the disease spread that the incidence
estimates of COVID-19 cases show. In comparison, the proportion of agree-
ment seeks to assess how similar the detection of hotspots is.
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3 Results and discussion

Figure 1 shows that larger sample sizes are associated with higher corre-
lation coefficients between incidence estimates. Moreover, any type of bal-
ance, either in time or space, produces scenarios with similar results as in
the full balance scenario. However, the scenario with sampling unbalances
in both space and time underperforms substantially.

FIGURE 1. Average correlation coefficients between incidence estimates of
COVID-19 cases and incidence estimates of simulated COVID-19 symptoms, for
each of the different sampling strategies.

Figure 2 shows the proportion of agreement in the top 20 ranking of mu-
nicipalities with the highest incidence estimates; we observe that as the
sample size increases, the proportion of agreement increases linearly.

FIGURE 2. Average proportion of agreement in the top 20 ranking of the munic-
ipalities with the highest incidence estimates of COVID-19 cases and simulated
COVID-19 symptoms, for each of the different sampling strategies.
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This simulation study takes out of the picture some of the limitations that
the case study presents, we assume that the data-generating mechanism of
the symptoms is the same as the COVID-19 cases, meaning that all COVID-
19 cases are symptomatic and that there is no time lag between the onset of
symptoms and confirmation of a COVID-19 case. This assumption allows
us to isolate the effect of the sample size and spatio-temporal balance and
explore its implication providing epidemiological insights.
Finally, we observed that the sample size is essential and helps to obtain
better results. However, models based on opportunistic samples can un-
derperform, even when the opportunistic samples have large sample sizes.
Furthermore, the sample’s representativeness is also vital, partly achieved
by spatio-temporal balance. This research finds that the methods remain
useful when there is some unbalance (in either time or space). However,
the models seem to break down when unbalance occurs in time and space
simultaneously. This is an important message to researchers setting up such
studies: they should ensure that some form of balance is achieved.
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Abstract: Heterogeneity in survival outcomes for biomarker-enriched alone ver-
sus enriched and non-enriched cohorts combined is not yet fully understood.
Coefficient of variation ratios have been proposed as a meta-analytic measure of
variability. However, their application to survival data from clinical trials remains
a methodological gap. We develop a methodological procedure that leverages
coefficient of variation ratios (CVRs) to meta-analyse survival outcomes from
clinical trials. We apply this procedure to biomarker-enriched subgroup versus
trial population (enriched and non-enriched cohorts combined) in cancer trials.
Our preliminary results suggest that CVRs, derived from treatment and control
groups, are smaller in biomarker-enriched subgroup than that in the trial popu-
lation, and that this reduction in variability is driven by the treatment group in
the biomarker-enriched cohort.
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1 Introduction

Molecular profiling and novel trial designs are powerful to match patients’
tumor profile with more targeted therapies in oncology. Despite the ben-
efits and promises of increasingly refined therapies, the heterogeneity in
survival outcomes for biomarker-enriched subgroup alone versus total trial

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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population (enriched and non-enriched cohorts combined) is not fully un-
derstood. Approaches for meta-analytic measures of variability have been
successfully developed (senior et al. 2020, Nakagawa et al. 2015) and ap-
plied (Winkelbeiner et al. 2019) for normally distributed outcomes, but
have not yet been developed for survival outcomes.
The objective of this study is to develop a methodological procedure for
using coefficients of variation ratios (CVRs) for meta-analysing survival
outcomes from cancer trials. The second objective is to assess whether
biomarker-based treatments result not only in mean improved survival
outcomes, but also increased precision in treatment response of biomarker-
enriched subgroups in cancer trials.

2 Methodology

To construct a trial cohort for our meta-analysis, we conducted a literature
search of biomarker-stratified phase II and phase III cancer trials. Clinical
trials were included if i) they reported survival outcomes, including overall
survival (OS) and/or progression free survival (PFS), for both the total
trial population and biomarker-enriched subgroups, and ii) the treatment
under investigation had a an established mechanistic link that would drive
differential outcomes in the biomarker-enriched subgroup.
To estimate variability in the control and treatment groups, we recon-
structed pseudo individual participant data (IPD) from published Kaplan-
Meier survival curves making use of the R package kmdata (Redd et al.
2022). Using this pseudo-IPD data, we estimate parametric models, start-
ing with a lognormal model, and rely on restricted mean survival time
(RMST) to calculate:

E (Yt,k(τ)) =

∫ τ

0

St,k(y; θ)dy and

sd2 (Yt,k(τ)) = 2

∫ τ

0

ySt,k(y; θ)dy − E2 (Yt,k(τ))

where Yt,k is the survival time for treatment (t = 1) or control (t = 0)
group in the k’th trial, S denotes the survival function of the parametric
model with parameters θ, and τ is the time limit of the RMST. We rely
on RMST here, since calculating the mean and variance of the distribution
extrapolates to unobserved survival times.
To compare the variation in treatment and control group, we calculate
coefficient of variation ratios (CVR) for each trial, as described by Senior
(2020):
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where sd denotes the standard deviation, n the sample size, and x̄ the mean
survival time of treatment group T and control group C. The first term of
the formula is a “näıve” estimator of the CVR while the latter terms serve
as a bias correction for small samples. The associated sampling variance of
ln(CV R) is given by:
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After calculating coefficients of variation ratios (CVRs) for all trials as
in equation (1), we perform meta-analysis using random effects models
to estimate the relative variability between treatment and control groups,
where the inverse of the variance is used as weight. Note that in the fu-
ture, we will replace the variance formula in equation (2) to also account for
censored data. Finally, we compare CVRs (with bootstrap confidence inter-
vals) from biomarker-enriched subgroups with those from intention-to-treat
(ITT) populations.

3 Results

For our preliminary analysis, we identified seven breast cancer trials with
a total of around 3,500 participants and successfully reconstruct IDP for
total and biomarker-enriched cohorts and their respective outcomes over-
all survival and progression-free survival. Figure 2 forest shows the CVRs
from each individual trial for the ITT and the biomarker enriched cohorts,
respectively. The preliminary results show lower variability ratios between
treatment and control for biomarker-enriched subgroups compared to the
ITT cohort, suggesting more homogeneous response in biomarker-enriched
subgroups compared to the ITT trial population. For all but one trial, we
see a trend towards smaller CVRs for the biomarker-enriched subgroups,
suggesting a more homogenous response in groups that are biomarker-
enriched. However, the associated confidence intervals overlap for the two
cohorts.
When aggregating the individual CVRs in a random effects meta-analysis,
the CVR is 0.950 [0.892, 1.002] for the ITT group and 0.865 [0.790, 0.945]
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FIGURE 1. The violin plot depicts the distribution of the CVR in 2000 bootstrap
samples for different time restrictions τ . Maximum upper bounds (max) are the
maximum of observed survival times. Boxplots depict the interquartile range
(IQR) and one standard error of deviation.

for the biomarker-enriched. This suggests that for the biomarker-enriched
subgroup, response to treatment has lower variability in the treatment
group relative to the control group.
To assess if the decrease in CVR is driven by a variability decrease in
the treatment or control group, we compare the assess ratio of the coef-
ficient of variation (CV) for subgroup over the CV of the ITT group, i.e.
CVenriched/CVITT .
Since we do not expect a change in the variation of the control group
between ITT cohort and biomarker-enriched subgroup, this ratio should
be around 1 for most trials. For the treatment group, we expect values
below 1 if there is less variation in the biomarker-enriched subgroup, i.e.
treatments targeted to a biomarker lead to more precise response. Our
preliminary results point towards this trend, with 6 out of 7 trials having a
CV ratio in the treatment group that is below 1. Figure 1 shows violin plots
of meta-analyzed CVRs in 2000 bootstrap samples in ITT and biomarker-
enriched cohorts for varying time windows used to construct RMST. This
corroborates our previous results that the CVR is lower for biomarker-
enriched cohorts. Since both distributions are overlapping, more data are
necessary to confirm this trend. Finally, our results seem to be robust across
the different choices of τ , with distribution becoming narrower for larger τ .
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FIGURE 2. The forest plot shows the CVRs for each trial for overall survival with
estimation restriction at 36 months, stratified by the intention-to-treat (ITT)
cohort and the biomarker-enriched subgroup. Error bars indicate 95% bootstrap
percentile intervals.

4 Conclusion

We demonstrate a feasible approach to construct coefficient of variation
ratios (CVRs) for survival outcomes using Kaplan-Meier curves from pre-
cision oncology trials. We apply this approach to seven breast cancer tri-
als that report overall survival and progression free survival for total trial
populations and biomarker-enriched subgroups. Preliminary results show
a trend towards lower CVRs for biomarker-enriched subgroups compared
to their intention-to-treat group, suggesting more homogeneous response
in biomarker-enriched subgroups. Further work in progress includes incor-
porating more trials from different tumor entities, assessing the quality of
the reconstructed pseudo-data, and comparing different (semi-)parametric
models within our procedure.
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1 Introduction to data from Animal Science

Different research domain create and work with different types of data. The
focus here is on data in the field of Life Sciences, more specifically from
research projects within Animal Science. This field includes for example
research on different types of species, their interactions, their influence on
climate and other questions. Traditionally data from animals can be col-
lected in observational as well as experimental studies. Often observational
data is more used in ecological studies. While these data also have a lot of
challenges in their analysis, this will not be the focus of the abstract. In
the following we will be only looking at experimental data. As a glimpse
into a few cases we will list some examples in Section 2.
In statistical consulting and analysis for experimental data from animal
studies we are mainly dealing with data from farm animals that are living
in stationary buildings. Most data is collected on animals such as cows,
calves, pig(let)s, sows, hens and chickens. The animals are usually housed
in smaller or larger units (pens) with multiple animals in one of them. The
housing units can be equipped with different installations in addition to

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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the required standards. Oftentimes different housing conditions are used
as experimental factors in the design, such as different types of flooring,
heating, additional ventilation, lighting, number of animals per pen, extra
equipment such as brushes, more water stations etc.
As the aims of the analyses are very diverse, also the type of variables and
aggregation levels can be very different. In addition to numeric variables we
also often deal with percentages or proportions (e.g. proportions of active
animals in a pen at any given time), scores (e.g. for indicating the severeness
of a (health) condition), binomial data etc. Due to the nature of the setup
of the experiments as well as the different treatments and measurements
data are often on different levels of aggregation: mainly animal based or e.g.
small housing unit based. In addition observations are often longitudinal
(on different scales).
Different types of data and study aims require different types of methods.
In the examples listed below we ultimately chose for a (generalized linear)
mixed model framework. While we aim to consult with the researchers
before start of the experiments in order to discuss the experimental design
from a statistical point of view, more often than not are we confronted with
designs that can be challenging to accommodate in more commonly used
models and will thus require adapted or new methods. For example this
can be due to multiple layers of nested and crossed random effects due to
the interaction between housing arrangements and treatments. Depending
on the type of experiment and variables we also are faced with different
sample sizes. For example studies on behavior of animals are often smaller
as the data collection can be very expensive (e.g. in terms of time). Large
amounts of longitudinal data are often generated from the use of sensors.
We are presenting the studies in a neutral description focussing on the sta-
tistical challenges. No ethical questions will be discussed. In the examples
cited below all necessary ethical permissions were approved.

2 Examples from consultation practice

2.1 Health status of cows using sensor data

The aim of this project was to relate the postpartum health status of a
cow to (derived) measurements from sensors that were placed on the ani-
mals pre-partum as well as some general characteristics of the cows. The
experiment included 180 cows in 4 different farms (Van Dixhoorn et al.,
2023) followed over a period of 8 weeks. The housing conditions and other
circumstances were standardized between the different locations. The re-
sponse variable in this case was a measure for the global health assessment
of the cow. It is expressed as a numeric variable. The animals are mon-
itored with sensors on the neck and leg. The sensors recorded different
activity features (respectively eating, ruminating, inactive or active or step
counts and a count of transitions from lying to standing or walking). These
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were aggregated into hourly data. Characteristics from these time series
were derived and used as explanatory variables in the analysis. Addition-
ally we control for parity in the analysis as well the influence of farm (as
a random effect). Through different stages of variable selection (univariate
pre-selection, stepwise/all possible subset selection) we identified a final
model including only few of the variables derived from the sensor measure-
ments. The results of this study will form the basis for further research to
use these non-invasive sensor measurements as a diagnostic tool to identify
a problematic health status.

2.2 Influential factors on calf weight

A larger dataset (250000 records) was collected by companies supplying
feed for calf rearing. While all calves are subject to the same nutritious
content and feeding regime, they come from a large number of different
farms of origin and will be housed on a large number of farms in the sec-
ond phase of their development. The variable of interest is here the growth
of the calves. The aim of the analysis is two-fold: trying to identify a rank-
ing of calf-rearing farms as well as investigating the factors that influence
the growth of the animals. These factors are very diverse and range from
characteristics of the animals themselves, to variables relating the farm of
origin and destination, grouping over time (as animals arrive at a certain
age, potentially together from the same farm) and other. Some of the vari-
ables are from surveys while other are measured on animal or housing unit
level.

2.3 Housing conditions affect behavior

This is an example for a study in animal behavior. This is usually studied
in smaller studies due to the labor-intensive data collection. Often the vari-
ables are generated from video imaging that still involves a lot of manual
annotation. Treatments in these types of studies can be very diverse and
can range from size of the pen, number of animals housed to design and
equipment of the unit, different access to food sources etc. Here, challenges
for the analysis often involve the proper treatment of the type of data de-
scribing a behaviour: present/not present, percentages of shown behavior in
a certain timeframe and the like. The level of aggregation over time or over
animals versus housing units is regularly discussed with the researchers.
Additional complications arise when the behaviors of interest are rare.

Acknowledgments: Special thanks to all researchers involved in the ex-
amples, especially from Wageningen Lifestock Research as well as the fac-
ulty of Animal Sciences at Wageningen University.
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Abstract:
We introduce the Quantile Neural Additive Model (QNAM), an extension of the
Neural Additive Model (NAM), which brings the Generalized Additive Model
(GAM) into the deep learning context by replacing its smoothers with feature
specific subnetworks. Due to the conceptual simplicity of the NAM, this extension
of the framework deeper into the field of distributional regression is straightfor-
ward to implement and its ability to circumvent problems of established quantile
regression approaches will make it a valuable tool for quantile regression in the
future.

Keywords: Neural Networks; Additive Models; Quantile Regression.

1 Introduction

Quantile regression aims to estimate conditional quantiles of data depen-
dent on explanatory variables and is used in settings in which one is in-
terested in covariate effects on extreme values. Compared to other distri-
butional regression models, quantile regression does not rely on any dis-
tributional assumptions in its basic form, however, Bayesian extensions of
quantile regression make use of auxiliary distributions.
The additive quantile models (QGAMs) introduced in Fasiolo et al. (2021)
offer the same conveniences as Generalized Additive Models (GAMs)
(Hastie and Tibshirani, 1986), hence they allow for the inclusion of many
different types of effects and smoothers with automatic smoothing parame-
ter choice. However, working with very large datasets might become prob-
lematic. Furthermore, the common smoothers have issues estimating jagged
shape functions or dealing with structural breaks. Both of these problems
do not play a role for neural networks. Making use of gradient descent

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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based optimizers with mini-batches, they are known to be easily scalable.
Additionally, due to not relying on low-rank smoothing approaches, they
have the advantage of being able to flexibly approximate more challenging
shape functions.
Neural Additive Models (NAMs) as introduced in Agarwal et al. (2021) are
a novel type of artificial neural network with directly interpretable covari-
ate effects. Conceptually, NAMs take an established model class and simply
translate it into the deep learning context by replacing the smoothers from
GAMs with neural networks. Making use of the NAM-framework, we in-
troduce the Quantile Neural Additive Model (QNAM). For the QNAM, we
simply modify the NAM by changing the loss function from the negative
log-likelihood of the assumed distribution to the pinball loss introduced by
Koenker and Bassett Jr (1978).

2 Methods

In GAMs, the predictor η is the sum of smooth terms denoted as fj(zj)
and a parametric model part Xβ such that

η = Xβ +

J∑
j=1

fj(zj)

with η = g(µ), µ being the canonical parameter of a distribution of the ex-
ponential family which is linked to the predictor using the link function g.
The smooth terms can usually be expressed as linear combinations of basis
functions evaluated at z. NAMs follow the same basic structure as GAMs
and model the predictor to be the sum of multiple independent covariate
effects. However, instead of using the common smoothers, usually splines,
these effects are learned using neural networks. Compared to conventional
fully connected neural networks, every input feature has its own subnet-
work, the outputs of which are summed for the model prediction. As in
GAMs, this additive structure allows for interpretability of the covariate
effects.
The QNAM is simply a NAM which minimizes the pinball loss defined as

n∑
i=1

wτ (yi, ŷi,τ )|yi − ŷi,τ |,

with τ ∈ (0, 1) being the quantile to be estimated, ŷi,τ being the fitted
values and

wτ (yi, ŷi,τ ) =

{
τ yi ≥ ŷi,τ
(1− τ) yi < ŷi,τ

.

Figure 1 shows an example of a QNAM consisting of J feature networks.
By simply adjusting the number of output neurons and specifying the loss
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FIGURE 1. Exemplary archicture of a QNAM: The network prediction is the
sum of multiple feature networks.

function to be the sum of the individual quantile losses, the QNAM can
also be extended to estimate multiple quantiles at once.

3 Simulations

To demonstrate the advantage of our model over other established ap-
proaches, we simulate a large dataset with N = 100, 000 observations and
a structural break, where the response y depends on a single covariate x.
The upper left panel of Figure 2 shows a QNAM, the upper right panel
shows a QGAM estimated using the R-package qgam (Fasiolo et al., 2021).
Both models estimate the 99%-quantile. For the QGAM, we use the default
specifications for the non-linear effect, a thin-plate regression spline with
rank k = 10. The QNAM consists of two hidden layers with 64 and 32
neurons.
Whereas the QGAM smooths over the structural break and appears to fit
the data quite badly in the area around it, the QNAM captures it quite well.
By increasing the rank of the used smoother, one could improve the ability
of the QGAM to capture structural breaks, however, this may lead to very
jagged estimated effects and quickly becomes computationally problematic
for a dataset of this size.
The lower panel of Figure 2 demonstrates the easy extendability of the
QNAM and shows a model which estimates multiple quantiles at once with
τ = (0.01, 0.2, 0.4, 0.6, 0.8, 0.99). While the known issue of quantile crossing
does not play a role for a dataset of this size, the simultaneous estimation of
quantiles could be used to further extend the model by including measures
to prevent quantile crossing for smaller datasets.
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FIGURE 2. Comparison of QNAM and QGAM. The models in the upper two
panels estimate the 99%-quantile of the data with the estimated quantiles plotted
in red and the true values in green. The lower panel shows a QNAM estimating
multiple quantiles at once.

4 Probabilistic Load Forecasting on the Household
Level

The deployment of smart meters that monitor the electricity consumption
of individual households and the data they collect open up new possibili-
ties for probabilistic electric load forecasting on the household level which
can provide valuable insights for power grid operators and other actors in
the energy industry. The London Smart Meter dataset, collected by the
UK Power Networks1, available in a preprocessed version combined with
weather data on Kaggle2, contains half-hourly measurements from 5,567
households in the greater London area from between November 2011 and
February 2014. The total amount of observations amounts to about 167
million. The size of the dataset necessitates a model that is equipped to
handle large amounts of data. Furthermore, the heterogeneity of the data

1https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-
london-households

2https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london
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FIGURE 3. Estimated distribution of predicted electricity consumption for one
household over the course of one day. Left panel shows a QNAM, right panel
a NAMLSS based on the ZAGA distribution. The shaded areas show the 90%
and 50% prediction intervals respectively, the true observed values are depicted
as black dots. For the QNAM, the orange line is the predicted median, in the
NAMLSS it is the predicted mean of the distribution.

requires a model that can estimate its distribution in a flexible manner.
We use a QNAM to estimate the conditional distribution of the energy
consumption y in time t+ h such that

Ft,h(y | xt) = P (yt+h ≤ y | xt)

where xt contains information known at time t, such as past energy con-
sumptions and exogenous covariates, such as time of day, position within a
year, weekday and temperature at time t+h, as well as a factor variable for
the specific household. As in Taieb (2016), we obtain the distribution by
estimating multiple quantiles simultaneously. For our model, we estimate
21 quantiles with τ = (0.01, 0.05, 0.1, . . . , 0.95, 0.99) and a forecast horizon
of h = 48.
We compare our model to a NAMLSS (Thielmann et al., 2023), another
extension of the NAM which estimates a parametric distribution in a way
similar to GAMLSS (Stasinopoulos and Rigby, 2008). For the NAMLSS,
we assume a Zero Adjusted Gamma distribution (ZAGA), since it allows
for skewness as well as zero values. The NAMLSS is trained by minimizing
the negative log-likelihood of the ZAGA distribution. It consists of three
sub-models, one for each distribution parameter that define a ZAGA dis-
tribution, that are trained simultaneously.
Figure 3 visualizes the results of a model trained on a subset of 500 house-
holds and showcases how the proposed model can be used for forecasting
the energy consumption of one specific household over the course of a day.
Both models appear to predict the conditional distribution similarly and
seem to be able to capture household specific electricity consumption pro-
files adequately.
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Abstract: In some real problems, the count response is inflated in a particular
value k and a k-inflated power series (SIPS) distribution is used as its distribution.
Here, a generalized neural network mixed mixture (GNNMM) model is applied
for predicting outcomes as nonlinear functions of predictors in longitudinal k-
inflated power series data.
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1 Introduction

Finite mixture models are commonly used to handle count data with in-
flated zeros. However, more generally, some datasets have inflated counts
at a value k, which is not necessarily zero. Such k inflation can arise in
questionnaire data due to the nature of the question and/or responses, for
example, Arora (2018) found inflation at k = 6 where women were asked
about the number of smear tests taken in the past six years (where k = 6)
corresponds to once per year; Figure 1 displays count data with inflation
at k = 6.
Generalized Linear Mixed Models (GLMMs) provide a flexible framework
for modeling longitudinal data but can have poor predictive power when
covariate effects are non-linear, and, hence, Mandel et al (2021) proposed
a mixed effects neural network.
The aim of this paper is to extend Mandel’s work to model the k-inflated
count longitudinal responses.

2 k-Inflated Power Series Distribution

The power series (PS) class of discrete distributions, which in-
cludes the Poisson, binomial, and negative binomial, can be described

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. The bar charts of the simulated k-inflaed poisson data, k = 6.

by the probability mass function

fPS(n|ν) = p(N = n|ν) =
a(n)νn

g(ν)
, n = 0, 1, 2, ...,

where ν > 0, a(n) ≥ 0 and g(ν) =
∑∞
n=0 a(n)νn is the normalizing con-

stant. This can be extended to a k-inflated power series (kIPS) model for
a longitudinal count variable Nit via

p(Nit = nit|πit, νit) =


πit + (1− πit)

a(k)νkit
g(νit)

;nit = k,

(1− πit)
a(nit)ν

nit
it

g(νit)
;nit ̸= k,

(1)

where πit, 0 ≤ πit ≤ 1, is a mixing proportion for the value k, and t =
1, . . . , Ti is the time index for the ith individual.

3 GLMM Model

For longitudinal count response Nit, let Xit and Zit be the p × 1 and
r × 1, known and fixed vectors of covariates, for the ith subject at time
t, respectively. Also, Wit is some s× 1 sub-vector of Xit. Then, the kIPS
GLMM for longitudinal k-inflated count data is given by

Nit|bi, νit, πit ∼ kIPS(νit, πit),
q1(νbit) = X ′

itγ1 + W ′
itbi,

q2(πit) = Z ′
itγ2,

(2)

where q1 and q2 are some known link functions for νit and πit, respectively
(Sharifian et al., 2021). Typically, q1 will be taken to be the log link function
for νit, and q2 will be taken to be the logit link function for πit. The vector
of random effects, bi is used to include within-subject dependence through
time and is typically assumed to follow a multi-variate normal distribution.
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FIGURE 2. The architecture of a multi-layer generalized neural network mixed
model (Mandel et al., 2021)

3.1 Parameter Estimation

To obtain the MLEs for the parameters of the mixture model (2) it is
reasonable to apply the EM algorithm. Let ni = (ni1, ..., niTi

)′, n =
(n

′

1, ...,n
′

m)′, ui = (ui1, ..., uiTi
)′, and u = (u

′

1, ...,u
′

m)′. Then the com-
plete data for the EM algorithm are (n,u, b). Now, we characterize the
model by the latent variable Uit where Pr(Uit = 1) = πit. If it is sup-
posed that Nit|(Uit = 1) and Nit|(Uit = 0) have the mass function de-
generated at the value of k and the mass function of a power series
distribution, the joint density of (Nit, Uit) is given by f(nit, uit|bi) =
[πitI{k}(nit)]

uit [(1 − πit)fPS(nit|νit)]1−uit . Based on the complete data
(n,u, b), the kernel log-likelihood, log f(n,u|b), is obtained as follows:

log f(n,u|b) =

m∑
i=1

Ti∑
t=1

log f(nit, uit|b) =

m∑
i=1

Ti∑
t=1

[
uitlogπit

]
+

m∑
i=1

Ti∑
t=1

[
(1− uit)

(
log(1− πit) + log fPS(nit|νit)

)]
.

Because this log-likelihood is linear in uit, it is straightforward to compute
its expected value (E Step), which is then followed by maximisation (M
Step); we iterate between these two steps until convergence.

4 Neural network extension

Consider a feed-forward ANN with L hidden layers, Xit as the p inputs, and
an univariate output νbit. Figure 2 shows the architecture of our proposed
neural network extension model. The neural network’s output νbit can be
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written as a nonlinear function of the predictors Xit as well as the network
weights ω(l) and biases δ(l) through a series of nested activation functions
gl(.) for layers l = 0, 1, 2, ..., L. The Xit enters into the neural network
through the Lth hidden layer consisting of kL nodes, producing

α
(L)
it = gL

[
ωLXit + δ(L)

]
(3)

where ω(L) is a KL × p weight matrix, δ(L) is a bias vector of length kL,
and gL(.) is the activation function applied to its input vector. For the lth
hidden layer (l = 1, ..., L− 1) with kl nodes, the layer’s output is

α
(l)
it = gl[

[
ωlα

(l+1)
it + δ(l)

]
, (4)

where ω(l) is a Kl×kl+1 matrix and δ(l) is a vector of length kl. The output
from the neural network, the parameter of the power series distribution, is
as follows:

νb
it = g0

[
ω0α

(1)
it + δ(0) + W

′

itbi

]
, (5)

where ω(0) is 1 × Kl. The linear predictor for the random effects W
′

itbi
is included in the final layer of the network. For estimation, we apply the
previously described EM algorithm but with a neural network in place of
the linear predictor.

5 Discussion

The proposed GNNMM is highly flexible as it can handle non-linear, lon-
gitudinal k-inflated data. We will demonstrate the utility of the GNNMM
compared to existing approaches on both real and simulated data in our
presentation.
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Abstract: A new cure model for gap times between recurrent events is pro-
posed. The model is characterized by a fully parametric rate function derived
from a non-homogeneous Poisson process (NHPP). To obtain flexible shapes of
the rate function, the baseline log-cumulative rate function is modelled as a re-
stricted cubic spline (RCS) function of log time. Furthermore, a shared frailty
is included in order to develop a survival model for heterogeneity that accounts
for zero-recurrence subjects. With this purpose, we assume that the frailty has
a non-central chi-squared distribution with zero degrees of freedom (d.f.), which
gives rise to a non-mixture cure model. The model also includes covariates, acting
multiplicatively on the rate function. The usefulness of the model is emphasized
through its application to hospital readmission data.

Keywords: Gap times; Non-mixture cure model, Non-homogeneous Poisson pro-
cess; Restricted cubic splines; Shared frailty.

1 Introduction

Recurrent gap time data often arise in biomedical research when it is in-
tended to study the time between consecutive events (Cook and Lawless,
2007). However, scientific advances have led to an increase in the number
of subjects that will never experience a recurrence, who are designated as
zero-recurrence subjects. Zhao and Zhou (2012) developed a semiparamet-
ric mixture cure model considering that the recurrence process is derived

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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from a NHPP. Under this approach, Sousa-Ferreira et al. (2020) specified
a flexible parametric form for the baseline rate function based on a RCS.
Nevertheless, the within-subject correlation problem triggered by the un-
observed heterogeneity, which can lead to biased estimators, has not yet
been addressed.

2 The flexible non-mixture cure model

Suppose there are n independent subjects in study and each one can ex-
perience a maximum of Ki (i = 1, . . . , n) recurrences of an event. For
the ith subject, let Tik be the time of the kth event (k = 1, . . . ,Ki),
Yik = Tik − Ti,k−1 the gap time and Wi a non-negative random variable.
Following the approach of Zhao and Zhou (2012), the recurrence process
is assumed to be a NHPP. Then, we consider a multiplicative model in
which, conditional on the shared frailty Wi = wi, the cumulative rate func-
tion (crf) of the kth gap time is given by

H(y|ti,k−1, wi, zik) = wiH(y|ti,k−1) exp(β′zik), (1)

where H(y|ti,k−1) = H0(y+ ti,k−1)−H0(ti,k−1) is a baseline crf, zik is the
covariate vector and β is the regression coefficients vector. As considered
in Sousa-Ferreira et al. (2020), we propose to model the logH0(·) as a
RCS function of log time. The complexity of the curve is regulated by the
number of d.f., given by d.f. = m + 1, where m is the number of internal
knots of the RCS. By convention, when d.f. = 1 the baseline rate function
has a Weibull hazard form.
In certain settings, the unobserved heterogeneity may be originated by the
existence of some non-susceptible subjects, while the others have a vary-
ing degree of susceptibility. Motivated by Rocha (1996), we accommodate
this situation considering that the frailty has a non-central chi-squared
distribution with zero d.f. and non-centrality parameter γ > 0, denoted
by χ

′2
0 (γ). This distribution can be obtained as a Poisson mixture of cen-

tral chi-squared distributions with even d.f. Some properties of χ
′2
0 (γ) are

described in Rocha (1996). In particular, its Laplace transform (LT) is

LW (s) = π1−(1+2s)−1

, with π = exp(−γ/2). Note that χ
′2
0 (γ) has a mass

at zero given by P{W = 0} = π (0 < π < 1), following that LW (∞) = π.
Then, the unconditional (population) crf of the flexible non-mixture cure
model is obtained by taking the expectation of (1) over Wi, yielding

Hpop(y|ti,k−1, zik) = − log
{
π1−[1+2H(y|ti,k−1) exp(β

′zik)]
−1}

. (2)

So, two situations can occur: the ith subject experiences at least one re-
currence, being a recurrent subject with P{W > 0} = 1− π; or the ith
subject does not suffer any event, being either a recurrent subject with
P{W > 0} = 1− π or a zero-recurrence subject with P{W = 0} = π.
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The inferential procedure is based on the maximum likelihood method,
under a non-informative right-censoring mechanism and assuming that the
frailties W1, . . . ,Wn are independent and identically distributed random
variables. Since the proposed model is fully specified, the parameter es-
timation is based on the unconditional likelihood function, which can be
expressed as

L =

n∏
i=1

(−1)di

{
Ki∏
k=1

h(yik|ti,k−1, zik)δik

}
L
(di)
W

[
Ki∑
k=1

H(yik|ti,k−1, zik)

]
,

where h(y|ti,k−1, zik)=dH(y|ti,k−1, zik)/dy, di=
∑Ki

k=1 δik, δik is the usual

right-censoring indicator and L
(d)
W (·) is the dth derivative of the LT of Wi.

The computational implementation was developed in R software (R Core
Team, 2023), using the Broyden–Fletcher–Goldfarb–Shanno method.

3 Application to hospital readmission data

The analysed data represent the gap times (in days) of successive hos-
pital readmissions of 403 patients diagnosed with colorectal cancer, after
surgery to remove their tumours. The maximum follow-up time was 2176
days (≈ 6 years) and a total of 861 readmissions were recorded, with 199
patients (49.4%) having no recurrence at all. The data are available in the
R library frailtypack and contain the following covariates: chemother-
apy (0: untreated, 1: treated); gender (0: male, 1: female); Dukes’ stage
(1: stage A−B, 2: stage C, 3: stage D); and Charlson comorbidity index
(0: index 0, 1: index 1− 2, 3: index ≥ 3).
The Akaike information criterion (AIC) was used to informally select the
number of d.f. of the RCS. Thus, models with 1 to 4 d.f. were fitted, without
including covariates or the proportion of zero-recurrence subjects. The AIC
values (7067.6, 7046.0, 7047.7 and 7048.5) indicate that the most adequate

TABLE 1. Results obtained from fitting the flexible non-mixture cure model to
hospital readmission data.

Parameters Estimate ŜE p-value of Wald test

Spline part ξ0 −8.343 0.605
ξ1 1.207 0.154
ξ2 0.011 0.004

Chemo [ref. untreated] −0.189 0.159 0.234
Gender [ref. male] −0.643 0.152 2.170e-05
Dukes’ stage [ref. A−B]

C 0.294 0.180 0.102
D 1.188 0.216 3.908e-08

Charlson index [ref. 0]
1 − 2 0.543 0.294 0.065
≥ 3 0.676 0.151 7.517e-06

π 0.140 0.035
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number is d.f. = 2. Then, the regression model characterized by (2) was
implemented and the results are shown in Table 1.
In our model, the reference group consists of untreated male patients, who
are in Dukes’ stage A−B, have Charlson index 0 and frailty W = 1. For
this group, the zero-recurrence proportion estimate is π̂ = 0.140. The
chemotherapy coefficient estimate is negative, with a non-significant ef-
fect on the gap time between readmissions, suggesting that the treatment
reduces the rate of readmission but has a negligible effect. Recurrent female
patients have significantly longer gap times to hospital readmissions com-
pared to the recurrent males. The other two important prognostic factors
are the Dukes’ stage D and Charlson index ≥ 3, both yielding a significant
increasing effect on the rate of readmission. Notice that the regression coef-
ficients hold a cluster-level relative risk interpretation, referring to compar-
isons between subjects that share the same values of frailty and remaining
observed covariates.
The model-based estimates of the conditional and unconditional rate func-
tions, for subjects with null covariate vector, are depicted in Figure 1. All
estimates exhibit a right-skewed unimodal shape. When W = 1 (reference
group), the readmission rate reaches its maximum value 24 days after the
previous recurrence. However, for the population, the maximum value is
attained after 18 days.
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FIGURE 1. Estimated conditional and unconditional rate functions, based on
the flexible non-mixture cure model with d.f. = 2 for the spline part.
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4 Final remarks

In this paper, the approach of Zhao and Zhou (2012) is extended to include
a shared frailty. In particular, we propose that the frailty follows a χ

′2
0 (γ)

distribution, which has a probability mass at zero and is continuously dis-
tributed on the positive real line. Therefore, it allows to account simulta-
neously for the within-subject dependence among recurrent gap times and
the existence of zero-recurrence subjects in the population.
For future research, it would be interesting to conduct a simulation study to
evaluate the performance of the inferential procedure in several scenarios.
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Abstract: In generalized regression models the effect of continuous covariates is
commonly assumed to be linear. This assumption, however, may be too restrictive
in applications and may lead to biased effect estimates. While a multitude of
alternatives for the flexible modeling of continuous covariates have been proposed,
methods that provide guidance for choosing a suitable functional form are still
limited. To address this issue, we propose a detection algorithm that evaluates
several approaches for modeling continuous covariates and guides practitioners to
choose the most appropriate alternative. The performance of the algorithm was
assessed in a simulation study. To illustrate the proposed algorithm, we analyzed
data of patients suffering from chronic kidney disease.
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1 Introduction

Generalized linear models (GLMs) are one of the most popular tools for
regression analysis. In GLMs the outcome of interest is related to a set
of covariates using a linear combination of the covariate values (i.e., con-
tinuous covariates are fitted by simple linear terms). Although this linear
modeling approach is often considered the default and rarely questioned in
practice, assuming linearity may often be too restrictive, and misspecify-
ing the functional form of a continuous covariate may lead to biased effect
estimates. There exist a number of established alternatives for the flexible
modeling of continuous covariates – among others, categorization, struc-
tural breaks, polynomial regression, generalized additve models (GAMs)
and classification and regression trees (CART) – that go beyond classical
GLMs. However, because each method exhibits specific benefits and draw-

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
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backs, the choice of the most appropriate one remains highly challenging
and its importance is frequently neglected (Sauerbrei et al., 2020).
To address this issue, we propose an algorithm that examines various mod-
eling alternatives and is able to detect nonlinearity and interactions be-
tween covariates, if they are present. The two-step algorithm (described in
Section 3) utilizes tree-based splits which makes the resulting effects eas-
ily interpretable. More specifically, it indicates whether (i) linear effects are
sufficient, (ii) varying linear effects should be included in the model formula,
(iii) one or several covariates exhibit non-linear effects or (iv) interaction
effects occur in the data.

2 A group of generalized regression models

We consider generalized regression models, where the expectation of an out-
come yi, i = 1, . . . , n, is linked to a vector of p covariates xi = (xi1, ..., xip)

⊤

in the form E(yi| xi) = g−1(η(xi)), where g(·) denotes a suitable link func-
tion and η(·) denotes the predictor function. Assuming that the effect of a
covariate xj on the outcome is simply linear yields the model with predictor
function

η(xi) = β0 + βj xij , (1)

where β0 is the intercept and βj is the linear regression coefficient. Alter-
natively, one can consider a predictor function with a piecewise constant
effect of the form

η(xi) = β0 + γj I(xij > cj) , (2)

where I(·) denotes the indicator function, cj is a split point in xj and γj is
the corresponding regression coefficient. A more complex model using an
additive combination of the linear and piecewise constant effect yields the
predictor function

η(xi) = β0 + βj xij + γj I(xij > cj) . (3)

Note that both, the linear and the piecewise constant model, are nested
in model (3). When using a multiplicative combination of the linear and
piecewise constant effect, the predictor function is given by

η(xi) = β0 + βj1 xij + βj2 I(xij > cj)xij , (4)

The linear model is nested in in model (4), as setting βj2 = 0 yields (1).
Finally, we consider an extension of (2) allowing for an additional split
in xj , which has the form

η(xi) =


β0 + γjr I(xij > cj)

+ γjℓ I(xij ≤ cj ∧ xij > cjℓ) , if split in {xij ≤ cj} ,
β0 + γjℓ I(xij ≤ cj)

+ γjr I(xij > cj ∧ xij > cjr) , if split in {xij > cj} .

(5)
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Importantly, models (1) to (5) form a group of nested models that can all
be fitted using the framework of tree-structured varying coefficient (TSVC)
models (Berger et al., 2019). In the presence of multiple continuous covari-
ates x1, . . . , xp each part of the predictor function can take the form as
given by (1) to (5). Furthermore, models (4) and (5) allow for an interac-
tion between two covariates.

3 Algorithm

We propose a two-step algorithm that examines the modeling alternatives
introduced in the previous section and automatically chooses the most ap-
propriate one according to their predictive performance. More specifically,
we compute the predicted log-likelihood of the models using leave-one-out
cross validation (LOOCV). In addition, we apply the so-called “one stan-
dard error rule” (1SE rule), which is an established strategy for the selection
of tuning parameters in regularized regression (Chen and Yang, 2021).
Let us again consider one continuous covariate xj . In the first step of the
algorithm, the linear model (1) and the piecewise constant model (2) are
evaluated. Among these two models, the model with the larger predictive
log-likelihood is selected and compared to the null model (with intercept
β0 only). If the condition of the 1SE rule is met, the selected model is
confirmed and the algorithm continues with step 2. Otherwise, no effect
of xj is found and the algorithm is terminated.
In the second step of the algorithm, if a linear effect was selected in step 1,
the models (3) and (4) are evaluated. Otherwise, if a piecewise constant
effect was selected in step 1, the models (3) and (5) are evaluated. In
the same way as in step 1, the algorithm first computes the predictive
log-likelihood values using LOOCV. Afterwards, it compares the better
performing model to the simpler one applying the 1SE rule. In a scenario
with multiple continuous covariates the models are adjusted for all effects
of the other covariates selected in step 1.

4 Empirical evaluations

To illustrate the proposed algorithm, we consider 100 simulated data sets
with five covariates x1, . . . , x5 ∼ N(0, 1) and a data-generating model of
the form

yi =β0 + β11xi1 + β12I(xi2 > 0)xi1 + γ3ℓI(xi3 ≤ 0)+

γ3rI(xi3 > 0 ∧ xi4 > 0) + εi , i = 1, . . . , 500 , (6)

where β0 = 1, β11 = 0.6, β12 = 1.2, γ3ℓ = −1, γ3r = 2. The indepen-
dent error terms εi were drawn from a zero-mean normal distribution with
standard deviation σ ∈ {1, 1.5, 2}. The results in Table 1 show that the
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TABLE 1. Results of the simulation. Proportion of simulation runs in which the
effects were identified correctly.

True effect σ = 1 σ = 1.5 σ = 2

Type (4) linear effect of x1 modified by x2 1.00 0.89 0.50
Type (5) interaction of x3 and x4 1.00 0.95 0.78
No effect of x5 1.00 1.00 1.00
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FIGURE 1. Results of the simulation. Estimated effects of x1 and x2 (left) and
x3 and x4 (right) using a data set, where all effects were correctly identified.

tree-structured interaction (5) between x3 and x4 was more likely to be
identified than the varying effect (4) of x1 with regard to x2 (particularly
in the scenario with large noise). The absence of the effect of x5 was per-
fectly detected illustrating the conservative impact of the 1SE rule. Figure 1
shows the estimated effects of one exemplary data set, where all effects were
correctly identified by the proposed algorithm.
In addition, we applied the algorithm to real-word data from chronic kidney
disease patients, where the objective was to to identify suitable functional
forms for the effect of BMI and the biomarker HbA(1c) on the probability
of suffering from diabetic nephropathy. The results indicate that BMI ex-
hibits a linear effect, whereas a piecewise constant effect with split point
49.3 mmol/mol is most suitable for HbA(1c).
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Abstract: Classical variable selection approaches for large-scale genotype data
are typically based on marginal associations of genetic variants with the phe-
notype of interest. In this work we consider more advanced variable selection
methods based on multivariable regression models for statistical fine-mapping of
variants in relevant genomic regions and combine the selected variants in predic-
tion models. We illustrate our approach on large UK Biobank genotype data for
the prediction of height as a polygenic trait. Based on our results we discuss the
interplay between model sparsity, predictive performance and generalizability.
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1 Introduction

In genetic epidemiology one is often confronted with large-scale data, where
both the sample size n and the number of variables p are very large. Due
to computational and memory issues, classical variable selection methods
for genotype data are typically based on univariate (marginal) associa-
tions of the genetic variants with the phenotype of interest, which are
conveniently available as summary statistics from genome-wide associa-
tion studies (GWAS). However, from a statistical modelling perspective
it is desirable to select informative variants not only based on marginal
associations but by using multivariable regression methods, which can be
directly applied to the individual-level genotype data.
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In this work we investigate different modern variable selection methods
for statistical fine-mapping of informative variants in genomic regions. In
particular, we consider the Adaptive Subspace (AdaSub) method (Staerk
et al., 2021) for ℓ0-type selection criteria, as well as Probing (Thomas et
al., 2017) for statistical boosting. To facilitate computations, we apply the
variable selection methods on separate genomic regions and combine the
selected variants from the individual regions in final prediction models.
Using large-scale data from the UK Biobank we illustrate our approach for
the prediction of height as a polygenic trait, which is influenced by several
common genetic variants.

2 Variable selection for statistical fine-mapping

To apply state-of-the-art variable selection techniques on large-scale genetic
data we consider a three-step approach (cf., Maj et al., 2022). In a first step,
we divide the genome into smaller regions, where relevant regions are de-
termined by a marginal screening approach (at least one genetic variant
associated with the phenotype with p < 5× 10−8) and are pre-filtered for
suggestively significant variants (p < 10−5). In a second step, we apply vari-
able selection based on multivariable linear regression methods to fine-map
the signal in the relevant genomic regions. Note that variants in the same
region tend to be highly correlated due to linkage disequilibrium (LD), so
that it is important to investigate their effects in a multivariable model. In
a third step, we combine the selected variants from the different regions into
a final multivariable polygenic prediction model using statistical boosting.
We consider two different variable selection methods for fine-mapping. The
Adaptive Subspace (AdaSub) method (Staerk et al., 2021) conducts a
stochastic search to address the discrete optimization problem of identifying
the best model according to an ℓ0-type selection criterion. AdaSub solves
multiple low-dimensional sub-problems of the original high-dimensional
problem in an adaptive way, where the probability of each variant to be
included in a new sub-problem is sequentially adjusted based on its selec-
tion frequency in previous sub-problems. We apply AdaSub to minimize
the extended Bayesian information criterion (EBIC), defined by

EBICγ(S) = n log
( 1

n

n∑
i=1

(
µ̂S + xTi β̂S − yi

)2)
+ (log(n) + 2γ log(p)) |S|,

for a set of variants S ⊆ {1, . . . , p}. Here, xi ∈ {0, 1, 2}p denotes the geno-
type and yi ∈ R the phenotype for subjects i = 1, . . . , n, while µ̂S is the
estimated intercept and β̂S ∈ Rp is the least squares estimate for the linear
model with variants in S (i.e. β̂S,j = 0 for j /∈ S). The parameter γ ∈ [0, 1]
in EBICγ controls the induced sparsity.
As a second variable selection approach we consider Probing (Thomas et
al., 2017) for statistical boosting with linear component-wise base-learners
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and squared error loss. Statistical boosting constructs an adaptive en-
semble of simple linear models by sequentially fitting the current model
residuals using the best performing base-learner. In Probing, for each vari-
ant Xj an additional base-learner is incorporated based on a “shadow vari-

ant” (probe) X̃j , which is a randomly permuted version of the original Xj

and therefore not associated with the phenotype. The boosting algorithm
is stopped as soon as the first base-learner for one of the probes X̃1, . . . , X̃p

is selected, encouraging the sparsity of the resulting model.

3 UK Biobank data: The prediction of height

We illustrate the fine-mapping methods on UK Biobank data to identify
informative variants and build prediction models for height. In particular,
we analyse imputed genotype counts for p = 9,812,717 variants (single-
nucleotide polymorphisms, SNPs), considering ntrain = 272,726 samples as
training data for fine-mapping and ntest = 135,291 samples as test data for
evaluating the prediction accuracy (all individuals of British ancestry).

FIGURE 1. Effect sizes (absolute regression coefficients) of final boosted model
for height based on fine-mapping with AdaSub for EBIC1. The x-axis reflects the
position of variants in the genome (chromosomes indicated by different colours).

Figure 1 illustrates the effect sizes of the selected variants in the final
prediction model for height based on fine-mapping with AdaSub for EBIC1.
While the distribution of effect sizes across the genome reflects the general
polygenicity of height, it is also apparent that the final model is relatively
sparse with some pronounced estimated effects for single variants.
Table 1 shows that the final model by AdaSub for EBIC1 indeed only in-
cludes 292 variants. As expected, the final model by AdaSub for EBIC0.5

is less sparse including 594 variants, while Probing results in the largest
model with 2,788 variants (which is still relatively sparse, e.g., compared to
a BayesR model with 546,011 variants, Klinkhammer et al., 2023). Despite
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TABLE 1. Results of fine-mapping for the prediction of height, in terms of num-
ber of selected variants (N variants), R2 on training data, squared correlation r2

between predicted and observed heights on test data, and root mean squared er-
ror (RMSE) of prediction on test data (unit: centimeter). All models include the
covariates age, sex and the first ten principal components of the genetic data.

Method N variants Training R2 Test r2 (% train.) Test RMSE

AdaSub EBIC1 292 0.6073 0.6030 (99.3%) 5.835 (cm)
AdaSub EBIC0.5 594 0.6292 0.6201 (98.6%) 5.708 (cm)
Probing 2,788 0.6581 0.6389 (97.1%) 5.567 (cm)

the sparsity of the models, all methods yield reasonable prediction perfor-
mance with r2 > 0.6 on test data (cf. Klinkhammer et al., 2023). However,
there is a clear trend that sparser and hence more interpretable models
tend to come at the prize of a reduced prediction accuracy, which might be
explained by the high polygenicity of height. On the other hand, sparser
models tend to yield a more stable predictive performance (i.e. less overop-
timistic results on training set compared to test set). This may also hint
at potential benefits of sparser fine-mapped models regarding the general-
izability to different populations (cf. May et al., 2022). Further research is
warranted to investigate the interplay between invariant predictions, spar-
sity and causality in the context of polygenic models (cf. Bühlmann, 2020).

Acknowledgments: This research has been conducted using the UK Bio-
bank Resource under Application Number 81202.

References
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Abstract: Foehn is a wind on the leeward side of a mountain range and is
characterized by a sharp increase in wind speed and changes in temperature and
relative humidity. Strong foehn winds can damage trees, overturn cars, or con-
tribute to the spread of wildfires. Therefore, understanding changes in foehn oc-
currences over time due to a changing climate is of great interest. Unfortunately,
foehn cannot be measured directly (such as, e.g., temperature) but meteorolog-
ical observations with sufficiently high resolution are needed for classification,
often based on expert judgment. Consequently, foehn classifications are limited
to specific periods where the necessary data and expertise are available.
To obtain fully objective probabilistic foehn classifications over long time periods
we propose a novel combination of unsupervised and supervised statistical learn-
ing. Based on 10-minute observations from automated weather stations, which
are only available in the last 10–20 years, probabilities for foehn occurrence are
obtained from a Gaussian mixture model with concomitant variables and two
components (capturing foehn vs. no foehn). The resulting probabilities are ag-
gregated hourly to a binary foehn indicator variable which can be linked to an
atmospheric reanalysis dataset that is available only at a coarser resolution but
over a much longer time period (about 70–80 years). Therefore, a probabilistic
binary classifier – here we use logistic regression with lasso-based stability selec-
tion – can be learned on the most recent 10–20 years and then employed to obtain
out-of-sample predictions – so-called reconstructions – for foehn occurrence on
the previous decades.
The method is illustrated for long-term foehn reconstruction at several stations
in the European Alps. This allows to investigate possible changes in foehn occur-
rence in relation to climate change or to use foehn as an input for other models
for which it is relevant but lacking so far.

Keywords: mixture model, variable selection, classification, reconstruction
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1 Methodology

1.1 Unsupervised learning: Two-component mixture model

Figure 1 shows the stations used in this study, spanning across Switzerland
and Austria. For each site, meteorological observations for the location
itself as well as for a nearby mountain station are available for the last
17–22 years with a 10-minute temporal resolution.
Since foehn shows a characteristic wind direction, the mixture model is only
fitted to the data where the wind blows from a pre-defined wind sector,
specific for each location. If the wind direction is outside the sector, the
foehn probability is set to zero.

C

N−

N

S−

S

NW

NE

SE

SWAigle
Montana

Altdorf
Innsbruck/Ellbögen

Mariazell

44°N

45°N

46°N

47°N

48°N

49°N

50°N

 5°E 10°E 15°E

Station location and neighborhood information

FIGURE 1. Location of the stations plus information about neighbouring loca-
tions used for calculating covariates based on the ERA5 reanalysis data set (e.g.,
spatial differences). Exemplarily labeled for the most eastern station (Mariazell).

To obtain the probability for foehn occurrence, a two-component Gaus-
sian mixture model with additional concomitant variables is used (Grün
and Leisch 2008). While the potential temperature difference to the nearby
mountain station (y) is used to model the parameters θ for the two Gaus-
sian components f() (foehn vs. no foehn), relative humidity and wind
speed are used as concomitant variables X for modeling the probability
π for an observation falling into the second component. The resulting two-
component distribution is thus specified as follows:

h(y,X, θ, α) =
(
1− π(X, α)

)
· f(y, θ1)︸ ︷︷ ︸

first component

+π(X, α) · f(y, θ2)︸ ︷︷ ︸
second component
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For the concomitant model, logistic regression is used:

log
( π

1− π
)

= XTα; π =
exp(XTα)

1 + exp(XTα)

Once the required parameters θ,α are estimated, the final a-posteriori prob-
ability p̂ ∈ [0, 1] can be calculated.

p̂(y,X, θ, α) =
π(X, α) · f(y, θ2)(

1− π(X, α)
)
· f(y, θ1) + π(X, α) · f(y, θ2)

The probability p̂ is the result of the objective classification and allows to
obtain foehn probabilities for the same period and on the same temporal
resolution for which the observations from the weather station are available.

1.2 Supervised learning: Reconstruction

For the foehn reconstruction, the result (p̂) from the unsupervised classifi-
cation is converted into a binary foehn indicator to then be combined with
atmospheric reanalysis data. As the reanalysis data is only available on an
hourly temporal resolution, p̂ needs to be aggregated. The foehn indicator
is set to 1 if p̂ ≥ 0.5 for at least 1/3 of an hour (i.e., at least 20 minutes of
foehn per hour), else to 0. This then serves as the binary response variable
for the reconstruction, thus supervised learning.
As covariates, data from the fifth generation atmospheric reanalysis data
set (ERA5; Hersbach et al. 2023) is used. This includes information inter-
polated to the target location itself and spatial and temporal differences to
neighbouring locations as illustrated in Figure 1, which overall yields more
than 550 possible covariates.
While any binary response model can be used here, this study makes use
of logistic regression with lasso-based stability selection (Meinshausen and
Bühlmann 2010) to account for the large number of covariates. Separate
models are estimated for each of the six sites and for each hour of the day.
Once estimated, out-of-sample prediction is used to reconstruct the foehn
probability on an hourly temporal scale for the period where reanalysis
data is available (1950–2023).

2 Results

By combining the unsupervised and supervised learning approaches from
the previous section we first diagnose/classify foehn based on more recent
10-minute observations and to subsequently predict/reconstruct the foehn
occurrence probability based on 1-hour ERA-5 data over several decades.
This opens up many new possibilities for studying long-term developments
of foehn occurrence as well as using foehn occurrence as an explanatory
variable in other studies, e.g., in ecology or wildfire research.
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FIGURE 2. Left: Annual frequency for all six stations based on the reconstruc-
tion; the horizontal bars show the periods where observations are available. Right:
Monthly frequencies for Ellbögen, separately for each decade.

Figure 2 provides some first insights into long-term trends. The left panel
shows annual averages for all six stations 1950–2022. This reveals that oc-
currences vary substantially between stations but less so over time, without
any long-term increases or decreases. The right panel shows decadal aver-
ages for each month at station Ellbögen, revealing that the periods with
low foehn occurrences in summer remain very stable, while there is more
variation in spring and fall. Specifically, in November there seems to be an
upward trend with more foehn events in the recent two decades.
Future research will refine these insights by further extending reconstruc-
tion periods, more locations (outside Europe), and a full analysis of cali-
bration and validation of different supervised learners (e.g., also including
random forests, gradient boosting, or neural networks).

Acknowledgments: The computational results presented here have been
achieved using the LEO HPC infrastructure of the Universität Innsbruck.
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Abstract: Many symmetric and asymmetric models have been proposed for
square contingency tables with ordinal categories. However, fitting some symme-
try and asymmetry models in statistical packages takes much work. This paper
gives an equivalent expression of the asymmetry model based on the f -divergence.
Additionally, the asymptotic distribution of estimators is given. We also imple-
ment the goodness-of-fit test of that model in R language. It helps compare test
results using various functions f because this implementation can take arbitrary
function f .

Keywords: Goodness-of-fit test; Ordinal category; Quasi symmetry; R language.

1 Introduction

Square contingency tables may arise when each subject is observed on an or-
dinal response at two different points in time. Such tables also occur in sam-
ple pairs of matched individuals and experiments conducted on matched
pairs. For a square contingency table with the same row and column or-
dinal classifications, many observations concentrate on main diagonal cells
or near. Thus, we are interested in considering symmetry rather than inde-
pendence between row and column variables. The issues of symmetry have
been treated in many studies, for example, Kateri and Papaioannou (1997),
Kateri and Agresti (2007), and Tahata (2020, 2022).
For square contingency table analysis, Tahata (2020) proposed an asym-
metry model based on f -divergence. We shall refer to this model as the
ASk[f ] model. The ASk[f ] model includes the QS[f ] model (Kateri and
Papaioannou, 1997) and the OQS[f ] model (Kateri and Agresti, 2007) as
special cases. This study finds an equivalent representation of the ASk[f ]
model. Additionally, we give the asymptotic distribution for the estimator

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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of parameters in that model using the result in Lang (2004). Using this rep-
resentation, we implement the goodness-of-fit test of the ASk[f ] model in
the language of R. Our implementation can take function f , score {ui}, and
k as argument. It enables users unfamiliar with contingency table analysis
to analyze easily.

2 Model and its properties

Let πij denote the probability that an observation will fall in the (i, j)th
cell of an r × r contingency table (i = 1, . . . , r; j = 1, . . . , r). Assume that
a set of known scores u1 < · · · < ur can be assigned to the rows and the
columns. For a given k (k = 1, . . . , r − 1), the ASk[f ] model is defined as

F (2πcij) =

k∑
h=1

uhi αh + γij (i = 1, . . . , r; j = 1, . . . , r), (1)

where γij = γji, π
c
ij = πij/(πij + πji), and F (t) = f ′(t). It should be

noted that f is a twice-differential and strictly convex function on (0,∞)
with f(1) = 0, f(0) = limt→0 f(t), 0 · f(0/0) = 0, and 0 · f(a/0) =
a limt→∞(f(t)/t). The ASk[f ] model has properties that can be reduced
to some asymmetry models like the QS[f ] model (when k = r− 1) and the
OQS[f ] model (when k = 1) by specifying k.
When k = r − 1, the ASr−1[f ] model can be expressed as

F (2πcij) =

r−1∑
h=1

h∏
s=1

(ui − us)α∗
h + γij (i = 1, . . . , r; j = 1, . . . , r),

where γij = γji. It is equivalent to (1) when k = r − 1. When α∗
1 = · · · =

α∗
r−1 = 0, this model reduces to the symmetry model, i.e., πij = πji (i < j).

Although the details are omitted here, we get for j = 2, 3, . . . , r,

α∗
j−1 =

F (2πc1j)− F (2πcj1) +
∑j−2
h=1

{∏h
i=1(uj − ui)

}
α∗
h

−
∏j−1
i=1 (uj − ui)

. (2)

The parameter α∗
h in the right-hand side can be replaced by (πij). Namely,

equation (2) enables us to deal α∗
h as function of (πij).

Let nij denote the (i, j) cell observation in the r × r table with n =∑
i

∑
j nij . Assume that a multinomial distribution with n and π applies to

the table, where π = (π11, . . . , π1r, . . . , πr1, . . . , πrr)
T. Also, let mij denote

the expected frequency in the (i, j) cell, that is, mij = nπij .
The model class comprises MPH models expressed as h(m) = 0 us-
ing expected frequency vector m = (m11, . . . ,m1r, . . . ,mr1, . . . ,mrr)

T

and constraint function h is introduced in Lang (2004). Maximum like-
lihood fitting and large-sample inference for MPH models are described
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in the paper. The ASk[f ] model can be expressed as h(π) = 0 where
h(π) = (h1,k+2(π), . . . , h1r(π), h23(π), . . . , h2r(π), . . . , hr−1,r(π))T with

hij(π) = F (2πcij)− F (2πcji)−
k∑
l=1

{
l∏

s=1

(ui − us)−
l∏

t=1

(uj − ut)

}
α∗
l .

It should be noted that the parameters α∗
l (l = 1, . . . , k) are the functions of

π given by equation (2), and h(π) is dk×1 vector, where dk = r(r−1)/2−k.
Therefore, the MPH model includes the ASk[f ] model in a particular case.
Let π̂ij and m̂ij denote the maximum likelihood estimate (MLE) of πij
and mij under the ASk[f ] model, respectively. That is, m̂ij = nπ̂ij . The
MLEs (m̂ij) may be obtained using the Newton-Raphson method to the
log-likelihood equations. Let α∗(π) = (α∗

1(π), . . . , α∗
k(π))T. We consider

the asymptotic distribution of α∗(π̂) with π̂ = (π̂11, . . . , π̂1r, . . . , π̂r1,
. . . , π̂rr)

T. Note that the function α∗
l (π) (l = 1, . . . , k) is defined by equation

(2). From Theorem 3 in Lang (2004), we can obtain
√
n(π̂−π)→

d
N(0,Σ),

where Σ = D −ππT −DH(HTDH)−1HTD. Herein, D denotes a diag-
onal matrix with the ith component of π as the ith diagonal component,
and H denote the r2×dk matrix of partial derivatives of h(π) with respect
to π. That is, H = ∂hT(π)/∂π. Using the delta method, the asymptotic
distribution of α∗(π̂) can be obtained as follows.

√
n(α∗(π̂) − α∗(π)) →

d

N(0,AΣAT), where A = ∂α∗(π)/∂πT. Let ÂΣAT denote AΣAT with

πij replaced by π̂ij . Additionally, the lth diagonal component of ÂΣAT is

denoted by v̂(α∗
l ) for l = 1, . . . , k. Therefore, the approximate confidence

interval of α∗
l is obtained.

3 An example

We implemented DisplayASkfResult function that displays the result of
the goodness-of-fit test in R language. Table 1 is the cross-classification
of the influence of scientists (row) and officials (column) on the global
warming policy (Smith et al., 2006). Note that category (1) is a great deal
of influence, (2) is a fair amount, (3) is a little influence, and (4) is no
influence. As an example, we fit the model with f(t) = t log(t), ui = i, and
k = 1, i.e., the linear diagonals-parameter symmetry model (Kateri and
Agresti, 2007). The result of the function DisplayASkfResult for the data
in Table 1 is shown in Figure 1. The details of the data analysis will be given
in the poster presentation. Source code exists in https://github.com/icy-
mountain/MasterResearch.

Acknowledgments: We would like to thank Professor Joseph B. Lang for
providing us with the code mph.fit. Also, we would like to thank Professor
Maria Kateri for her helpful comments.
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TABLE 1. Cross-classification based on a survey about the appropriate influence
level of scientists and officials on global warming policy.

Scientists’s Official’s policy level
policy level (1) (2) (3) (4) Total

(1) 98 150 135 53 436
(2) 37 131 133 43 344
(3) 9 16 33 15 73
(4) 4 1 4 21 30

Total 148 298 305 132 883

Source: GSS (2006).

FIGURE 1. Capture image of R Console.
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Abstract: Sensitivity, specificity, positive and negative predictive values are
widely used as performance measures of the diagnostic test, and these are often
used simultaneously. Although there are several methods to test the superiority
of these performance measures, these approaches separately compare sensitivity,
specificity, positive and negative predictive values. Therefore, we propose a supe-
riority test that can confirm that compared to an existing diagnostic test, a new
diagnostic test is superior regarding at least one of the performance measures.
This allows for a comprehensive determination of the superiority of the new test
based on four measures. A simulation study showed that the performance of the
proposed testing procedure is appropriate when the sample size is small.

Keywords: negative predictive value; positive predictive value; sensitivity; speci-
ficity.

1 Introduction

In medicine, diagnostic tests are important for early detection and treat-
ment of disease. The sensitivity (SE), specificity (SP), positive predictive
value (PPV) and negative predictive value (NPV) are widely used as per-
formance measures of the diagnostic test. The SE is the probability that
the diagnostic test result is positive among diseased subjects, and the SP
is the probability of a negative that the diagnostic test result is negative
among undiseased subjects. On the other hand, the PPV is the probability
of having the disease when the diagnostic test result is positive, and the
NPV is the probability of not having the disease when the diagnostic test
result is negative.

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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If the study design is paired, the comparison of the two SEs and SPs can
be performed by the McNemar’s test (Zhou et al, 2011). Also, there are
several methods to compare the two PPVs and NPVs (Leisenring et al,
2000; Wang et.al, 2006; Kosinski, 2013). These methods compare each per-
formance measure separately. However, the performance of medical tests is
often evaluated using SE, SP, PPV, and NPV simultaneously.
Therefore, in this study, we propose an superiority test that investigates the
superiority of at least one of performance measures for a new diagnostic test
compared to an existing test. Furthermore, we execute simulation studies
to evaluate the performance of the proposed superiority test.

2 Proposed test

The superiority test proposed in this study is an appropriation of the idea of
the approximate likelihood ratio test (Tang et al, 1989). The performance
measures of the new diagnostic test are denoted as SE1, SP1, PPV1, NPV1,
and those of the existing diagnostic test are denoted as SE2, SP2,
PPV2, NPV2. The null hypothesis of the proposed superiority test is
H0: SE1 = SE2 ∩ SP1 = SP2 ∩ PPV1 = PPV2 ∩ NPV1 = NPV2, and
the alternative hypothesis is H1: SE1 > SE2 ∪ SP1 > SP2 ∪
PPV1 > PPV2 ∪NPV1 > NPV2.
Let m be a vector whose components are SE1 − SE2, SP1 − SP2,
PPV1−PPV2, NPV1−NPV2, and let Σ be a variance–covariance matrix
of m. Applying the delta–method and the multivariate central limit the-
orem, we can calculate Σ. Let A be a positive definite matrix such that
ATA = Σ−1. The statistic u =

√
NAm is approximately distributed as a

four-variate normal distribution with mean
√
NAm and covariance matrix

I, where N is the total sample size of observed data.
H0 is rejected at significance level α when

2∑
i=1

max(ûi, 0)2 > c,

where û = (û1, û2, û3, û4)T is composed of Σ̂−1 = ÂT Â and m̂, which are
calculated from observed data, and c is the critical value for the proposed
test. c is determined by

4∑
i=0

4Ci
24

Pr(χ2
i ≥ c) = α,

where χ2
i denotes the χ2 distribution with i degrees of freedom, and χ2

0 is
defined as the constant zero.
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3 Simulation

We performed simulation studies to investigate the performance of the su-
periority test (Tsup). We also compared the performance of the proposed
test with that of a method that combines the McNemar test and tests of
positive and negative predictive values (Kosinski’s test (Tkosi), Leisenring’s
test (Tleis), and Wang’s test (Twang)) with the Holm-Bonferroni method
for adjusting multiplicity. The Monte Carlo simulations were conducted
and repeated 100,000 times for each method. The seven true parameters,
SE1, SE2, SP1, SP2, conditional correlations between test outcomes for
disease present (ρD+ = 0.40) and for disease absent (ρD− = 0.40), and
prevalence of disease (π = 0.30), are set for each simulation scenario to
generate simulation data. The total sample size N was assumed to be 25,
50, 100, 200, and 500.
Table 1 shows the actual type 1 error rate for comparing performance
measures of new and existing diagnostic tests. It shows that the actual
type 1 error rates for all testing methods do not exceed the nominal type
1 error rate 0.05.
Table 2 and 3 show the empirical powers of tests. It shows that the empirical
power of proposed superiority test is the highest among four methods when
the sample size is small. However, that is lower than other testing methods
when the sample size is large.

4 Discussion

By the result of the simulation studies, we consider that the proposed
superiority test may be useful for the performance measures of comparing
two diagnostic tests simultaneously when the sample size is small because
the proposed test have higher power than other methods.

TABLE 1. Actual type 1 error rate
(SE1 = SE2 = 0.80, SP1 = SP2 = 0.85,
PPV1 = PPV2 = 0.70, NPV1 = NPV2 = 0.91)

N Tsup Tkosi Tleis Twang

25 0.046 0.004 0.010 0.001
50 0.029 0.013 0.018 0.009
100 0.022 0.023 0.026 0.021
200 0.019 0.027 0.028 0.026
500 0.017 0.029 0.029 0.029
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TABLE 2. Empirical power
(SE1 = 0.90, SE2 = 0.80, SP1 = SP2 = 0.85,
PPV1 = 0.72, PPV2 = 0.70, NPV1 = 0.95, NPV2 = 0.91)

N Tsup Tkosi Tleis Twang

25 0.088 0.009 0.020 0.002
50 0.107 0.039 0.056 0.025
100 0.187 0.146 0.174 0.133
200 0.364 0.396 0.401 0.389
500 0.780 0.830 0.832 0.829

TABLE 3. Empirical power
(SE1 = 0.85, SE2 = 0.80, SP1 = 0.90, SP2 = 0.85,
PPV1 = 0.78, PPV2 = 0.70, NPV1 = 0.93, NPV2 = 0.91)

N Tsup Tkosi Tleis Twang

25 0.087 0.016 0.032 0.004
50 0.121 0.073 0.099 0.051
100 0.190 0.198 0.213 0.179
200 0.342 0.387 0.396 0.372
500 0.735 0.783 0.786 0.778
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Abstract: The Education Endowment Foundation (EEF), a charity aiming to
break the link between socioeconomic disadvantage and pupil attainment, has
commissioned over 200 randomised controlled trials. The collection of data from
these trials, the ‘EEF Data Archive‘, forms a rich repository. It is vital to under-
stand the overall impact of EEF-funded interventions on disadvantaged pupils’ at-
tainment, as well as the ‘attainment gap‘ to their peers. The EEF Data Archive al-
lows gaining such understanding. This study utilized individual-level pupils’ data
from 100 trials available in this archive, with disadvantaged pupils being indicated
by students belonging to the lowest tertile of the baseline scores for each trial. A
Bayesian multilevel IPD meta-analysis was applied to the standardised outcome
measures (mathematics and literacy) to estimate the pooled effect size and the
attainment gap. The preliminary analysis revealed that EEF-funded interven-
tions improved low-attaining pupils’ attainment for literacy (effect size: 0.033,
95% CI: 0.011, 0.055) and mathematics outcomes (effect size: 0.019,
95% CI: -0.001, 0.038). Overall, the results align with the EEF mission of in-
creasing the attainment of disadvantaged pupils and closing the attainment gap.

Keywords: IPD meta analysis; multilevel models; effect size; educational inter-
ventions

1 Introduction

Raising the attainment of pupils from disadvantaged backgrounds, com-
monly defined in terms of family socioeconomic status, can help all pupils
in achieving their potential (Macleod et al., 2015). This is the main mission

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
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of the Education Endowment Foundation (EEF), an independent charity
who sponsor education trials. For example, Higgins et al. (2016) found that
an EEF-funded mastery learning intervention is a promising strategy for
narrowing attainment gaps. Similarly, Gorard et al. (2014) demonstrated
that pupils with low attainment prior to an EEF-funded reading interven-
tion showed greater positive results. These individual results are promising,
but only tell a partial story of the global impact EEF interventions have
had on reducing attainment gaps.
In this study, we investigated the pooled effect of EEF-funded interven-
tions on disadvantaged pupils’ attainment. We estimated the attainment
gaps between middle/high and low attainers using a new three-category
indicator called the Baseline Attainment Group (BAG), created from the
tertiles of standardised prior attainments. For each project, pre-test scores
were z-standardised and then categorised into three equal groups. Tertiles
of the standardised pre-test scores were created and defined as low, middle,
and high attainers’ groups. The lower tertile of this measure identifies low
attainers at baseline, allowing us to represent the subgroup of disadvan-
taged pupils. Specifically, we investigate the following research questions:
RQ1) What is the overall effect of EEF-funded interventions on low attain-
ers’ literacy and mathematics attainment? RQ2) Does the effect of EEF-
funded interventions on literacy/mathematics attainment differ between
low attainers and their peers?

2 Models and estimation

To summarise the intervention effect on low attainers, we applied the sim-
plified meta-analysis method detailed in Ashraf et al. (2021). Specifically,
to answer both research questions, we estimate the model:

Y s
ijk =

{
β0k + β1kPretsijk + β2kTijk + Sjk + ϵijk, for RQ1

β0k + β2kTijk + βl
3kBAGl

ijk + βl
4kTijkBAGl

ijk + Sjk + ϵijk, for RQ2,

where Y sijk and Pretsijk are standardised post-test and pre-test scores for
pupils i in school j from trial k; β0k is a fixed intercept, β1k is a fixed
gradient between the standardised post-test and pre-test scores, and β2k
is the average effect of the intervention in trial k; BAGl is 0 if BAG = l
and 1 otherwise, using the notation l = 1 for middle and l = 2 for higher
attainers categories of BAG, with low attainers forming the reference level.
The parameters βl4k represent the attainment gap, i.e., the difference in the
average effect of the interventions between BAG pupils (low attainers and
pupils belonging to level l) in trial k; Sjk ∼ N(0, ω2

jk), with ωjk capturing

between-school variability in trial k, and ϵijk ∼ N(0, σ2
k), with σk capturing

between-pupil variability in trial k.
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Note, the pre-test variable was ignored in the attainment gap model since it
forms the basis of the BAG variable and could lead to non-identifiabilities
if both were included. Only the low attainers subgroup was considered to
answer the first research question (RQ1). The effect of EEF-funded inter-
vention on low attainers was then compared separately to that of middle
and high attainers to answer the second research question (RQ2) regarding
the attainment gap.
The pooled effect size for subgroup analysis and attainment gap can be
calculated by:

ϕ =

∑K
k=1Wkθk∑K
k=1Wk

,

where Wk = (ω2
jk + σ2

k)−1 captures within-trial variability, given that
between-trial variability was pre-scaled to 1, with θk = β2k for subgroup
analysis and θk = β4k for the attainment gap model.
A Bayesian framework with vague priors was used to fit the required mul-
tilevel models, from which the pooled estimates of effect sizes were com-
puted. Credible intervals were obtained as 2.5% and 97.5% quantiles from
posterior distributions of the pooled effect size estimates. All analyses were
performed with manual implementations in the R package R2jags.

3 Results

At the time of the analysis (end of 2021) 100 projects were available in the
EEF Data Archive through the Secure Research Service (SRS) environ-
ment. Since some trials have both maths and literacy outcomes, in total
52 trials with maths outcomes and 85 with literacy were available. The
assessment of eligibility criteria resulted in 45 trials with literacy and 35
trials with maths outcomes to use in the final analysis. The results of the
subgroup analysis are shown in Table 1, where positive effect size estimates
mean that the EEF interventions has a positive effect on low attainers. Ta-
ble 2 shows the attainment gap estimates, where positive estimates mean
that due to the EEF interventions, lower attainers perform better than
their peers.

TABLE 1. Overview of pooled effect sizes for maths and literacy outcomes on
low attainers.

Outcome Trials Low attainers ES (95% credible interval)

Literacy 45 70,819 0.033 (0.011, 0.055)
Maths 38 116,031 0.019 (-0.001, 0.038)
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TABLE 2. Overview of the attainment gaps between low attainers and mid-
dle/high attainers. The estimates are the pooled attainment gaps and their 95%
credible interval in parenthesis

Outcome Trials All pupils Low vs Middle attainers Low vs High attainers

Literacy 45 179,312 -0.001 (-0.020, 0.019) 0.003 (-0.017, 0.023)
Maths 38 270,979 0.010 (-0.007, 0.027) -0.001 (-0.021, 0.020)

4 Discussion

The results indicate that EEF-funded interventions improved low attain-
ing pupil’s literacy outcomes with an effect size of 0.033 (0.011, 0.055).
The improvement in the mathematics outcomes of low attainers was less
pronounced, with an effect size of 0.019 (-0.001, 0.038). For both outcomes,
there was no indication that EEF-funded interventions would widen the
attainment gap. The evidence from this study can be used to support EEF
stakeholders in assessing ‘what worked’ for these specific disadvantaged
pupils.
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Abstract: Environmental epidemiology estimation of air pollution effects on
health is often conducted via generalized additive mixed models and observa-
tional data aggregated over space and time. Often times, the introduction of
structured random effects can produce substantial changes in the slope coeffi-
cient which makes it challenging to interpret effect size. Spectral methods to
model the slope as a function of spatial scale have recently been introduced by
Guan et al (2022). We extend those methods to the spatio-temporal setting mo-
tivated by a case study on estimation of short-term air pollution effects on acute
hospital admissions.
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1 Introduction

A fundamental task in environmental epidemiology is to estimate effects
of environmental stressors such as air pollution on health. These studies
are often conducted in a non-experimental setting using observational data
routinely collected by governmental agencies. The effect of air pollution is
known to be different depending on the length of the exposure time and a
number of studies have been conducted to investigate both the short and
long-term effects. Common practice in short-term studies is to use Poisson
time series regression models with the daily count of hospitalisations as the
outcome, the daily level of pollution as a linear predictor and smooth func-
tions of weather variables and calendar time used to adjust for time-varying
confounders (Peng et al., 2009). In this work we analyze the short-term ef-
fect of particulate matter (PM10) on hospital admission for respiratory
causes for the 315 municipalities in the province of Torino, Italy in 2004. In

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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total, there are 12743 residents hospitalized for respiratory causes, aggre-
gated by municipality and day. Daily average temperature (Kelvin degrees)
and PM10 (µg/m3) are available at municipality level, the latter as esti-
mates based on daily average PM10 concentration. We show the difficulty
we encounter in interpreting the effect size of exposure on hospital admis-
sions under various models with different space and time random effects
specifications, which is symptomatic of confounding taking place between
the random effects and the exposure variable. Then we describe spectral
methods that have been proposed by Guan et al (2022) and propose an
extension to the space-time scenario. We show how this can be useful in
the context of short-term effects estimation to improve interpretation of
the model output.

2 Accounting for confounding via spectral methods

Let yi,t and Ei,t be the observed and expected number of hospitalizations
in municipality i = 1, . . . , 315 and day t = 1, . . . , 366 respectively, we as-
sume yi,t ∼ Poisson(Ei,t exp(ηi,t)), where exp(ηi,t) is the relative risk of
hospitalization in municipality i at time t. We model the risks as:

ηi,t = µ+ vt + ui + cTi,tγ + βxi,t, (1)

where among the fixed effects we have observed confounders ci,t such as
temperature and weekend (indicator 0 or 1) and exposure xi,t taken as the
sum of estimated daily concentrations of PM10 (µ/m3) in the three days
before t, in region i. The random effects (v1, ..., v366) and (u1, ..., u315) cap-
ture residual temporal and spatial structure and are modelled as a random
walk (RW) of order two for time and an intrinsic conditional autoregressive
(ICAR) process for space. The inferential target is β, with results being re-
ported as exp(10β), i.e. the relative risk of hospitalization associated to
10µ/m3 increase in PM10.
Table 1 summarizes the posterior distribution for the exposure effect
exp(10β) under several model assumptions on the random effects: spatial
random effects (only u), spatial and temporal random effects (both v and
u) and no random effects (i.e. v,u omitted). The effect of air pollution on
hospital admissions remains unclear as results varies according to the uti-
lized model. In Table 1 we see that the estimated relative risk increase for
additional 10µ/m3 is 1.2% for the spatial model and 0.3% for the additive
space-time model, with larger credible interval observed for the space-time
model.
The situation in which inclusion of spatial random effects modifies the slope
estimate is referred to as spatial confounding (Hodges and Reich, 2010; Page
et al., 2017). Here we note that confounding may take place both at spatial
and temporal level. In the following we describe an approach to deal with
space-time confounding.
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TABLE 1. Posterior summaries of exp(10β) under different model assumptions.

model mean sd quant0.025 quant0.5 quant0.975

no random effects 0.996 0.001 0.994 0.996 0.998
only space 1.012 0.001 1.010 1.012 1.015
space + time 1.003 0.002 0.999 1.003 1.006

Guan et al (2022) introduces spectral methods to analyze spatial confound-
ing bias as a function of spatial scale. Starting from the spectral decomposi-
tion of the precision matrix of the ICAR prior assumed on u, this approach
leads to modelling β in (1) as a smooth function of the obtained eigenval-
ues, (ω1, . . . , ω315), ordered so that ω1 ≤ . . . ≤ ω315. The slope is modelled
as:

β(ωi) =

L∑
l=1

Bl(ωi)bl i = 1, . . . , 315 (2)

where (B1(ωi), . . . , BL(ωi)) are b-spline basis functions evaluated at eigen-
value ωi and (b1, . . . , bL) the associated spline coefficients with an intrinsic
autoregressive prior. Guan et al (2020) propose a method of adjusting for
confounding based on the assumption that the relationship between expo-
sure and outcome is only “confounded” at a broad spatial scale. In other
words, it is assumed that an unbiased exposure-outcome association can
only be detected when we focus on pairs of neighbors, i.e. at a small spatial
scale. Under such assumption, the estimated β(ω315) =

∑L
l=1Bl(ω315)bl

(at the largest eigenvalue) is taken as the unconfounded exposure effect,
i.e. unaffected by global-(spatial)scale confounding bias. This method is
implemented in the eCAR R package.
The aim of the present work is to describe how the same idea can be
extended to different types of spatio-temporal models for discrete data,
including additive and interactions models based on intrinsic Kronecker
product Gaussian Markov Random Fields. Figure 1 shows some prelim-
inary results on the exposure effect varying over spatial frequencies ω
(left) and temporal frequencies ϕ (right), under an additivity assumption
β(ω, ϕ) = β(ω) + β(ϕ). From Figure 1 we can see that both exp(10β(ω))
and exp(10β(ϕ)) are close to the naive estimate of 1.003, reported in Ta-
ble 1, for small ω and ϕ. Interestingly, estimates are not constant over the
spatial and temporal frequency domains; in particular exp(10β(ϕ)) is ap-
proximately 1 for large ϕ, suggesting that no effect can be detected at a
small temporal scale. Similarly, there is no indication of a significant effect
at small spatial scale.
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FIGURE 1. Exposure effect estimated over spatial and temporal frequencies.

3 Conclusion

While the literature on spatial confounding has flourished in recent years,
less work has been done on space-time confounding. Here we have proposed
an extension of spectral methods proposed by Guan et al. (2022) to space-
time data with an application on short-term air pollution effects estimation
in environmental epidemiology. The spectral adjustment can be extended
to non-additive spatio-temporal models and this would lead to an estimated
surface β(ω, ϕ) that will inform about the effects size at small spatial and
temporal scales jointly.
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Abstract: In structural health monitoring, high-dimensional sensor readings can
be interpreted as functional data. In this paper, we apply an extended version
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1 Introduction

Structural health monitoring (SHM) is the scientific field of analyzing sig-
nals from sensory systems attached to structures such as bridges in order
to detect, localize and assess (potential) damage, and to predict the re-
maining service life of the structure. Accelerometers and inclinometers, for
example, provide signals of vibration and inclination in which anomalies
and damages should be detected to prevent a possible structural failure. In
a testing scenario conducted by Jaelani et al. (2023), multiple sensors were
attached to an experimental bridge at UniBw Munich (from now denoted
by ‘EBM’), and its inclination (in healthy condition) at ten different po-
sitions was measured during the course of n = 21 days with a resolution
of 100Hz before damaging the bridge. Figure 1 shows the testing vicinity
and example trackings in a downsampled version with a resolution of 1Hz
where the frequency change was achieved by taking the median over values
within the same second. For reasons of file compression, only every 10th
value is plotted here. We will restrict ourselves to only using these single
sensor (healthy) inclination data for further evaluation in this paper.
Due to the high resolution, sensor signals arise as almost continuous streams
and can be treated as functional data over the course of the day. On ac-
count of environmental factors such as temperature and solar radiation, it

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Left: The testing vicinity at EBM (Fabian Seitz, 2022). Right: Ex-
ample of daily trackings of one of a total of ten inclinometers.

can be expected to see some recurring daily patterns in the sensor data, and
treating the data as replicates across days i = 1, . . . , n seems to be a sensi-
ble approach. A common tool in functional data analysis (FDA) to reduce
dimensionality is functional principal component analysis (FPCA) where
the main directions of variability are identified. In the SHM field, FPCA
extends traditional physics-based methods and has found numerous appli-
cations in which it has proven useful means of analysis, for a comprehensive
review see Momeni and Ebrahimkhanlou (2022). Regular FPCA displays
curves as deviations from the mean. However, under ambient influences and
damages, it is reasonable to expect that the whole distribution of a signal
is affected so that an analysis merely in the center of the data is likely to
not be sufficient, see Tee et al. (2013). The FQPCA algorithm by Civieta et
al. (2022) extends the traditional form of FPCA to also include functional
(conditional) quantiles and capture sample-specific variability. In SHM, to
the best of our knowledge, there is yet no work that includes quantiles as
an option to summarize sensor signals in terms of dimension reduction but
also include day-specific conspicuities, which may indicate damage. In this
paper, we present the application of the FQPCA algorithm to the example
data from EBM and show that it is able to capture differences among the
samples.

2 Methods

Let Xi(t), t ∈ T , i = 1, . . . , n, describe a set of sensor signals defined on
some bounded closed interval T , e.g., T = [0, 1], which is a standardized
version of ‘day’ (24h) in this paper. The quantiles of Xi are defined as

QXi
(t, τ) = inf{x ∈ R, FXi(t)(x) ≥ τ}, (1)
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where FXi(t) denotes the cumulative distribution function of Xi(t). FQPCA
proposes a latent structure of

QXi
(t, τ) = ϕ0(t, τ) +

r∑
j=1

λij(τ)ϕj(t, τ)

to model the (day-specific) τ -quantile of sample curve i, with loadings
ϕ(t, τ) := (ϕ0(t, τ), . . . , ϕr(t, τ))′, scores λi(τ) := (1, λi1(τ), . . . , λir(τ))′,
and r ∈ N denoting the number of principal components. Note that the
intercept ϕ0(t, τ) models the general quantile trend, the matrix of load-
ings ϕ(t, τ) is common to all observations, and the score vectors λi(τ) are
signal-specific. This model is therefore comparable to traditional FPCA
where functional components are used to describe deviations from the mean
function of the data, but additionally promotes a tail-based analysis. To
estimate the scores and loadings the objective function

M(Λ(τ), ϕ(t, τ)) =
1

n

n∑
i=1

∫ 1

0

ρτ (Xi(t)− λi(τ)′ϕ(t, τ))dt

is minimized, with Λ(τ) = (λ1(τ), . . . , λn(τ))′ being the matrix of all scores,
and ρτ (u) = u(τ − I(u < 0)) is the quantile regression check loss function.
The solution is found using an iterative algorithm based on a probabilistic
approach (Civieta et al., 2022).

3 Results and Discussion

Each individual inclination signal as displayed in Figure 1 follows almost
the same shaped curve/general trend with no clear outliers being present.
Applying the FQPCA algorithm with a total number of r = 6 principal
components, however, reveals some variability among trackings.
Figure 2 shows the .1, .5, and .9 quantile estimates for the example in-
clinometer data. The top-left quantiles (day 1), for instance, follow a u-
shaped curve, while the two other samples reveal more w-shaped quantile
estimates. Furthermore, the .9 quantile estimate of day 2 and day 3, as op-
posed to the almost equally leveled .1 and .5 quantiles, is located relatively
high throughout, indicating an increased presence of peaks in the signals.
It is to be expected that such sample specifics unfold to a much bigger
extent once the structure sustains damage and it is therefore desirable to
monitor deviation or changes in the signals over time. Several FPCA-based
approaches have been proposed, compare Colosimo and Pacella (2010), in-
cluding, for instance, the monitoring of the corresponding scores.
Figure 3 shows the quantile-specific scores for the first three components
for the current application over the course of the tracking period. In the
case of the .1 and .5 quantile estimates, the corresponding scores oscillate
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FIGURE 2. Example daily signals from EBM using trackings from one incli-
nometer and the corresponding .1, .5, and .9 quantile estimates (top row) and
scores (bottom row) as provided by FQPCA.

around the zero mark with little variability, while in the .9 quantile case
there is a presence of outliers for the first and second component indi-
cating that a trend removal prior to monitoring is necessary. In the SHM
field, one main factor of nuisance is the variation in temperature, compare
Han et al. (2021). Future work could aim at incorporating the daily tem-
perature functions into the latent quantile structure (1) by, e.g., adding a
(non)parametric temperature-dependent shift to the intercept component,
i.e.,

QXi(t, τ) = ϕ0(t, τ) + f(Ti(t), τ) +

r∑
j=1

λij(τ)ϕj(t, τ),

where Ti(t) refers to the daily temperature function concurrently tracked
alongside the sensor output Xi(t), and f is a function that accounts for the
confounding effect of the temperature. This way, both day-specific differ-
ences as well as overall structural health states over time can be assessed,
providing a comprehensive analysis of sensor data in SHM.
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of the entire tracking period of n = 21 days.
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Abstract: Change point regression models were frequently used during the
COVID-19 pandemic to analyze changes in temporal trends. When this mod-
elling framework is applied to (partly) estimated time series, uncertainty arising
from the estimation process of the time series should be taken into account. In
this work, we present a general strategy to incorporate this additional uncertainty
into the estimation of standard errors and confidence intervals for regression co-
efficients and for the location of the change points using variance decomposition
based on Rubin’s rules for multiple imputation. Our approach is illustrated with
an application to COVID-19 hospitalization time series in Germany, which are
based on nowcast estimates to enable real-time analyses.

Keywords: change point models; segmented regression; nowcasting; uncertainty
quantification; COVID-19 data

1 Introduction

During the COVID-19 pandemic, change point regression was used in many
studies (e.g. Küchenhoff et al., 2021) to analyze relevant changes in tem-
poral trends in COVID-19 cases or other metrics of the pandemic. This
modelling framework enables the estimation of standard errors and confi-
dence intervals for linear effects as well as for the location of the change
points. If the underlying time series, however, is not (fully) observed, but
(partly) estimated, additional uncertainty arising from the estimation pro-
cess of the time series is ignored. This is a common situation for public
COVID-19 data, where e.g. new cases are often included with a delay of
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a few days. With our work, we provide a general framework to easily in-
corporate additional uncertainty into the uncertainty estimates of change
point models.

2 Data

Our study originates from the analysis of COVID-19 hospitalizations in
Germany which are publicly provided by the Robert Koch Institute (Robert
Koch Institute, 2023). Hospitalizations which are associated with a COVID-
19 infection are not reported with regard to the hospitalization date, but
the date when the infection was reported. This leads to incomplete data
in a real-time setting as a relevant number of hospitalizations belonging
to the latest reporting dates of infection has not yet occurred. Figure 1
illustrates how the shape of a time series for the same period changes over
time. Thus, realistic estimates of hospitalizations are required to derive
conclusions about temporal trends and potential change points in real-time
analyses.

0

1000

2000

17 Nov03 Nov20 Oct06 Oct
Reporting date of infection

H
os

pi
ta

liz
at

io
ns

Data version

2022−01−17
2021−12−15
2021−12−01
2021−11−24
2021−11−18
2021−11−17

FIGURE 1. Reported rolling weekly sums of COVID-19 related hospitalizations
for the period between October 1st, 2021 and November 17th, 2021 based on
different public data versions.

3 Methods

We obtain estimated numbers of hospitalizations Ŷt for time points t =
1, ..., T by applying the nowcasting procedure by Fritz et al. (2022). This
approach uses generalized additive regression to model the delay distri-
bution between the reporting date of infection and the reporting date of
hospitalization. Confidence intervals of the nowcast estimates are derived
relying on the strategy by Krinsky and Robb (1986) who propose to draw
bootstrap samples from the multivariate normal distribution of estimated
regression coefficients. Within these bootstrap samples, individual nowcast

time series Ŷ
(b)
t (b = 1, ..., B) are estimated.

To detect change points in the nowcasted time series Ŷt, we estimate a
segmented regression model based on the formulation of Muggeo (2003).
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For exponential family responses with expected value µ and link function
g(·), we use the model structure

g(µt) = β0 + ηt + αt+

K∑
k=1

γk(t− ψk)+, (1)

where β0 denotes the intercept, η a linear predictor containing additional
covariate effects, γ = (α, γ1, ..., γK) the vector of regression coefficents re-
garding the temporal trend, ψ = (ψ1, ..., ψK) the vector of change point
locations and K the number of change points.
This model, however, does not take the uncertainty induced by the now-
casting procedure into account. The obtained variance estimate V̂(θ̂) for

an arbitrary estimated coefficient θ̂ only reflects the parameter uncertainty
according to the change point model. To incorporate the additional source
of uncertainty, we make use of the already available bootstrap samples from
the nowcasting step and fit change point models for all bootstrapped now-

cast time series Ŷ
(b)
t . Building on Rubin’s rules for multiple imputation

(Rubin, 2004), we can consider the bootstrapped time series as imputed

and not fully observed datasets. The overall variance V̂total(θ̂) can then
be expressed as a weighted sum of within- and between-sample variance
through

V̂total(θ̂) = V̂within(θ̂) +

(
1 +

1

B

)
V̂between(θ̂), (2)

where Vwithin(θ̂) = 1
B

∑B
b=1 V̂(θ̂(b)) denotes the within-sample variance,

Vbetween(θ̂) = 1
B−1

∑B
b=1(θ̂(b) − ¯̂

θ)2 the between-sample variance with
¯̂
θ =

1
B

∑B
b=1 θ̂

(b) and B the number of bootstrap samples. For large B, the
overall variance converges to the unweighted sum of both components.
The number of required change points K is determined by means of the
BIC. To ensure comparability between the change point models in the
different bootstrap samples, the choice of K is based on the original sample
and kept as a fixed parameter over all bootstrap samples. Furthermore, a
matching scheme is applied to assign the estimated change points within
the samples to the closest change point of the original nowcast time series.

4 Results

Figure 2 exemplarily visualizes the nowcast estimates including 95% confi-
dence intervals for the rolling weekly sum of COVID-19 related hospitaliza-
tions in the German federal state of Bavaria on September 22nd, 2021 and
November 17th, 2021. As the nowcasting model assumes all hospitalizations
to occur within 40 days after the reporting date of infection, uncertainty in
the resulting time series only exists for the last 40 days. While the results
for September 22nd indicate a slight decline over the last two weeks with
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rather high uncertainty, the nowcasting results for November 17th reveal a
clear upward trend which would not be visible from the reported data.

Nowcasted Reported Realized after 40 days
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FIGURE 2. Comparison of reported and nowcasted COVID-19 related hospital-
izations in Bavaria with 95% confidence intervals (red shades) over a period of 90
days based on data from September 22nd, 2021 (left) and November 17th, 2021
(right). The dashed black lines show the realized hospitalizations after 40 days.

To detect change points in the temporal course of hospitalizations, we use
a negative binomial segmented regression model with a logarithmic link for
a time series over a period of 90 days. Uncertainty adjustment is based
on 100 bootstrap samples. Figure 3 illustrates the results obtained for the
data available on September 22nd and November 17th, 2021 with four
and six change points, respectively. For both considered periods, the pre-
sented strategy of uncertainty adjustment leads to higher standard errors
and wider confidence intervals for the estimated locations of recent change
points. Between-sample variance accounts for about 67% of the overall vari-
ance of the latest change point for September 22nd. For November 17th,
the increase of uncertainty through the nowcasting procedure for the latest
change point is rather moderate.
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FIGURE 3. Fitted curves (black lines) and estimated change points (solid blue
lines) for nowcasted COVID-19 hospitalizations in Bavaria (grey) over a period
of 90 days based on data from September 22nd, 2021 (left) and November 17th,
2021 (right). Blue shades represent 95% confidence intervals for change points
with uncertainty adjustment, dashed blue lines the borders without adjustment.
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5 Conclusion

The presented framework aims to include additional estimation uncertainty
into change point regression for estimated time series. We illustrated our
concepts with an application to COVID-19 hospitalizations in Germany. In
this context, we will retrospectively evaluate our outlined approach based
on daily hospitalization data versions for all 16 German federal states over a
period of one year. The proposed strategy of uncertainty adjustment, how-
ever, is more general and can be easily adapted to other research settings,
also with fully estimated time series. Further, the strategy is not limited
to bootstrap procedures for uncertainty quantification of the estimation of
the underlying time series, but can also be applied to other settings such
as Bayesian frameworks with posterior distributions.
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Abstract: p-values for discrete distributions have traditionally been defined as
for those of continuous data. Mid p-values are sometimes regarded as an alterna-
tive form of p-value for use with discrete data. We show that that the mid p-value
definition is preferable to the traditional one for discrete data, and is equivalent
to the traditional definition of the p-value in the case of continuous data, thus
we propose that it is used for all distributions, continuous or discrete.

Keywords: p-values; mid p-values; discrete test statistics.

1 Introduction

The “traditional” definition of a p-value as the “probability of observing
a test statistic at least as extreme as that observed” is well suited to the
case where the distribution of the test statistic is continuous, but not so
when it is discrete. In this paper, for clarity of notation and ease of ex-
planation, we will assume when discussing discrete distributions that they
take values 0, 1, 2, . . ., but the arguments may easily be adapted for other
discrete values. If X is a continuous random variable with (strictly increas-
ing) cumulative distribution function FX(x) = P (X ≤ x) then the equa-
tion F (x) = p has an unique solution ξp, and FX(ξp) = p, the (left-tailed)
p-value associated with ξp, P (X > ξp) often being referred to as the right-
tailed p-value. ξp is referred to as the 100pth percentile or the p-quantile of
the distribution. It is well known that the distribution P0 of p-values under
a null hypothesis is uniformly distributed on (0, 1), and hence E(P0) = 1

2
and Var(P0) = 1

12 . If however FX is not continuous and strictly increasing,
as is the case when X is discrete, then the equation F (x) = p fails to have
an unique solution. The traditional approach when X is discrete is to define
the pth quantile of a random variable X or of its corresponding distribution

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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as the least number ξ satisfying FX(ξ) ≥ p, (note that here ξ ∈ N), and the
corresponding p-value as P (X ≤ ξp), thus many quantiles share the same
value; for example, we see from Table 1 that for a Bin(3, 0.3) distribution
for any κ, 0.35 < κ < 0.78, ξκ = 1. Let P ⋆0 denote the distribution of tradi-
tional p-values under the null hypothesis. P ⋆0 is itself discrete on [p0, 1) if X
is infinite, or [p0, 1] if X is finite, (where pi = P (X = i)). It may be shown
(see for example, Berry and Armitage (1995)), that E(P ⋆0 ) = 0.5+0.5

∑
p2i .

For example for a Bin(3, 0.3) distribution (see Table 1): E(P ⋆0 ) = 0.674 and
Var(P ⋆0 ) = 0.063 ≈ 1

16 .

2 Mid-quantiles and Mid p-values

For discrete distributions, Franck (1986) strongly advocates the use of the
mid p-value, drawing on previous research by Lancaster (1961), Dempster
(1965) and Stone (1969). Mid p-values are defined by:

pmid = P (X < x) + 1
2P (X = x). (1)

Table 1 summarises the traditional and mid p-values for a Bin(3, 0.3) dis-
tribution. It may be shown (Berry and Armitage, 1995) that under the null
hypothesis:

E(Pmid) =
1

2
and Var(Pmid) =

1

12

(
1−

∑
p3i

)
, (2)

where the random variable Pmid is the distribution of pmid.

TABLE 1. Bin(3, 0.3)

Traditional and mid p-values.

x 0 1 2 3

P (X = x) 0.343 0.441 0.189 0.027
Trad p-value 0.343 0.784 0.973 1.000
Mid p-value 0.172 0.564 0.878 0.986

Mid-quantiles are defined analogously Let X be a discrete random variable
with distinct values v1 < v2 < · · · < vd, let P (X = vi) = pi.

ξmid(p) =



v1 if p < p1/2

vk if p = πk, k = 1, . . . , d

λvk + (1− λ)vk+1 if p = λπk + (1− λ)πk+1

0 < λ < 1, k = 1, . . . , d− 1

vd if p > πd
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FIGURE 1. Attainment: Traditional and mid-quantiles

In essence, mid-quantiles and mid p-values align for values at which the mid
p-values exist, and are obtained by linear interpolation at values inbetween.
See Figure 1.
For a more detailed account of mid-quantiles see Ma et al. (2011) or Wilson
and Einbeck (2018).
The employment of mid p-values has many advantages: under the null hy-
pothesis the expected values of mid-p values for discrete test statistics and
traditional p-values for continuous test statistics are equal, and their vari-
ances are approximately equal (see (2)), mirroring the continuous case. Also
the power and attainment (type-one error) rate of such tests is improved by
the use of mid p-values. Two such tests are the Wilcoxon-Mann-Whitney
rank-sum test (Mann and Whitney, 1947), which henceforth we refer to as
the Wilcoxon test, and the zero-modification test of Wilson and Einbeck
(2018) (to which we refer as the Wilson-Einbeck test henceforth for termi-
nological convenience), which uses the number of observed zeros as a test
statistic for zero-inflation or deflation. Simulation studies, based upon one
million resamples, show that for a Wilcoxon test on two samples of size
seven, under the null hypothesis the distribution of traditional p-values has
mean 0.518 and variance 1.001/12, whereas that of mid p-values has mean
0.500 and variance 1.000/12. Similarly simulation studies based upon one
million resamples of size n = 50 show that under the null hypothesis of
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a Poisson model with parameter µ = 3 under a Wilson-Einbeck test of
zero-inflation, the distribution of traditional p-values has mean 0.602 and
a variance of 1.047/12 whereas that of mid p-values has a mean of 0.508
and a variance of 0.965/12. Figure 2 illustrates the attainment rate of a
Wilson-Einbeck test of zero-inflation under the null hypothesis of a Poisson
distribution with parameters varying from 0.5 to 4.5, and a sample size of
n = 500. Clearly the attainment when mid p-values are employed is su-
perior to that when traditional p-values are used. Figure 3 illustrates the
power of a Wilson-Einbeck test of zero-inflation for samples of size n = 50,
where under the null hypothesis of a Poisson distribution with parameter
µ = 1, we see that the use of mid p-values results in increased power. Figure
4 illustrates the attainment rates obtained when Wilcoxon rank sum tests,
(using the exact test-statistic) are performed on two equally sized samples
of sizes 4 to 25; again the mid p-values out-perform the traditional.

FIGURE 2. Attainment: Wilson-Einbeck test of zero-inflation

3 Conclusion: All p-values should be mid p-values

We have seen that for discretely distributed test statistics the adoption
of mid p-values has many advantages, especially leading to superior at-
tainment rates than traditional p-values. Note that for a continuous test
statistic the definition of a traditional and mid p-value (1) are equivalent
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FIGURE 3. Power: Wilson-Einbeck test of zero-inflation. (Poisson distribution,
µ = 1, n = 50)

FIGURE 4. Attainment: Wilcoxon rank sum test

as for any continuous random variable X, one has P (X = x) = 0. Hence,
traditional p-values for the continuous case are in fact mid p−values, and
thus the definition of the mid p-value can be conveniently used to cover
both the discrete and continuous case, thus we propose that the definition
of the mid p-value should be use for all p-values.
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Abstract: Structural Health Monitoring (SHM) is increasingly applied in civil
engineering. One of its primary purposes is detecting and assessing changes in
structure conditions to reduce potential maintenance downtime. Recent advance-
ments, especially in sensor technology, facilitate data measurements, collection,
and process automation, leading to large data streams. We propose a function-
on-function regression approach for modelling the sensor data and adjusting for
confounder-induced variation.
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1 Introduction

Structural health monitoring (SHM) uses sensor data from buildings such
as bridges to detect, localize and/or quantify damages. These measurements
are not obtained under laboratory conditions, so the data also depends on
environmental influences such as temperature. Therefore, a model to adjust
for covariates is required when analysing the data. This paper considers the
recent data set by Jaelani et al. (2023 ). It consists of sensor measurements
of a test bridge in Munich, Germany. Among other variables, the strain was
measured with six strain gauges in 100 hertz and one external temperature
sensor in 1 hertz over 22 days in 2022 between March 11 and April 1. The
strain data were downsampled to 1 hertz to use the same frequency in both
types of measurements, resulting in 1,900,800 observations per sensor. Fig-
ure 1 shows a digital representation of the bridge. The strain sensors were
evenly distributed on both sides of the bridge. The external temperature
sensor inside a meteorological station was positioned on the north side of
the bridge.
A recent and comprehensive review of methods for SHM under varying
temperature conditions is provided by Han et al. (2021). Regarding fore-
casting and separating temperature-induced from structural responses, it

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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Meteorological
      station

DMS-CN

DMS-BN

DMS-AN

FIGURE 1. Digital representation of the Munich test bridge with the positions
of the three strain sensors (DMS) on the north side of the bridge.

is typically distinguished between input-output methods and output-only
approaches. In the first case, both observations of the sensor output and
confounding variables such as temperature are considered, while in the lat-
ter case, only the vibration or static (such as strain) responses of the struc-
tures are used, often using projection methods such as principal component
analysis (PCA). Among input-output methods, a very popular approach
is regressing sensor measurements on environmental and/or operational
variables, also known under the name response surface modelling. Then,
following the so-called “subtraction method” the predicted sensor data is
subtracted from the observed data, and the residuals are used for further
analysis. Various methods exist for fitting regression function(s) to the data,
ranging from simple linear or polynomial regression to advanced machine
learning approaches such as artificial neural networks.
This paper presents a functional data approach where we consider the sen-
sor measurements as functional data across days rather than each mea-
surement as a single sampling instance. Also, our method can be seen as a
combination of subtraction and projection methods.

2 A Functional Data Approach

The model we assume has the following basic form. To keep things simple,
we restrict ourselves to a single, functional covariate zj(t), e.g., denoting
the temperature at time t ∈ T , T = [0h, 24h], and day j, and a single sensor
output uj(t). Then,

uj(t) = α(t) + fu(zj(t)) + Ej(t), (1)

where α(t) is a fixed functional intercept, fu(zj(t)) is a fixed, potentially
non-linear effect of temperature, and Ej(t) is a day-specific, functional error
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term. This model has (at least) two advantages over response surface mod-
elling as used so far: (i) The functional intercept α(t) captures recurring
daily patterns that cannot be explained through the available environmen-
tal or operational variables, e.g., because the factors causing them are not
monitored. In the case of a longer monitoring period, we may extend the
one-dimensional α(t) to a two-dimensional, smooth surface α(t, dj), where
dj denotes the time/date of the year corresponding to the day j in the data
set. (ii) The error term/process Ej(t) is typically correlated over time, i.e.,
in t-direction. However, ignoring this correlation when fitting α and fu
through ordinary least squares, common maximum likelihood, or a similar
approach that assumes conditional independence between measurements
will typically lead to less accurate estimates and, more importantly, biased
measures of statistical uncertainty such as confidence or prediction inter-
vals. In SHM, the latter can be particularly harmful if those intervals are
used for determining if measurements are “out of control”.
In the framework of SHM, there is another essential aspect to note concern-
ing Ej(t): This process contains the relevant information for SHM, since it
captures deviations from the sensor output α(t) + fu(zj(t)) that would be
expected for a specific temperature if the structure/bridge is “in control”.
For exploiting this information, it is necessary to decompose this process
into a more structural component, say wj(t), and pure noise ϵj(t), i.e.

Ej(t) = wj(t) + ϵj(t). (2)

For doing so, we make use of the Karhunen-Loeve expansion, which allows
us to expand the random function Ej(t) as

Ej(t) =

∞∑
r=1

ξrjϕr(t) =

m∑
r=1

ξrjϕr(t) + ϵj(t), (3)

where ϕr are orthonormal eigenfunctions of the covariance operator of the
E-process and ξrj are the respective “scores”. Estimating the eigenfunc-
tions and scores is known under the name functional principal component
analysis (FPCA). The obtained scores ξ̂1j , . . . , ξ̂mj can be used, e.g., as
input for control charts and further monitoring schemes; see Centofanti et
al. (2021).

3 Results

Figure 2 illustrates the model output for the strain sensor DMS-BN (com-
pare Figure 1), with the functional intercept, as a two-dimensional surface,
being allowed to vary across days. The model was fit using R packages
mgcv (Wood, 2017) and refund (Goldsmith et al., 2022). For modelling
the functional intercept, we used a tensor product approach. The temper-
ature effect was fit as a one-dimensional cubic regression spline with the
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FIGURE 2. Results of the proposed functional modelling approach with two-di-
mensional functional intercept (left column) and the effect of temperature (right
column) on strain sensor (a) DMS-AN, (b) DMS-BN and (c) DMS-CN; time of
day was standardized to [0, 1].
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usual penalty on curvature. We see that the daily pattern (Figure 2, left)
differs between the sensors. For DMS-BN (middle), the values of the strain
sensor tend to be highest around the middle of the day and this effect
is rather constant across days, whereas for DMS-AN (top) and DMS-CN
(bottom), variation is rather across days than across time of the day. The
(partial) effect of temperature (Figure 2, right) appears to be quite linear
for all sensors, with the strongest effect found for sensor DMS-BN (middle).
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Abstract: This paper proposes a low-cost, non-intrusive eye tracker based on
Convolutional Neural Networks (CNNs) for analyzing blended learning education,
especially the effectiveness of the design of lecture videos. The input to our CNN
model is an image of the eye region of a person looking at a desktop screen and the
output is the predicted gaze point. Our network achieves an average prediction
error of around 9.7 pixels on the train set, 44.3 pixels on the test set and 311.1
pixels for an unseen person on a W1920 ×H1080 pixels screen.
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1 Introduction

Eye tracking involves capturing the movement of a person’s eyes and pre-
dicting the gaze point. It is increasingly used in various fields, including
engineering, epidemiology and psychology (David et al. 2021). Recently it
has also been employed to analyze learning processes since learners take
most information in through their eyes (Gruber et al. 2017). In particular,
the use of blended learning tools and the development of digital educa-
tional resources yields an array of potential applications - both in terms of
analyzing learning behavior and in terms of using insights gained by eye
tracking to further learning outcomes.
As learning takes place in different places depending on the students them-
selves, a non-device-dependent eye tracking method is required, which
works on laptops, tablets, and computers to gain insight into the real-life
learning environment of students.
Remote Video Occulography (VOG), also called remote video-based eye
tracking, uses images of eyes recorded with one or more video cameras to
detect the gaze point. Remote eye trackers film the subject with a camera

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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attached to the desktop, such as laptop webcams, where the subject is
performing a task or from a different but stationary position.
Thus, remote video-based eye trackers that process low-resolution images
offer a non-intrusive approach for eye tracking. Additionally, they can be
used on standard hardware with a webcam such as laptops and tablets, so
there is no need for additional hardware. This offers a way to track the
eye movement of students watching lecture videos or performing tasks on
learning management systems at home or in their usual learning environ-
ment.
Remote video-based eye tracking can be subdivided into appearance-based
and feature-based approaches (Villanueva et al. 2009). Feature-based ap-
proaches rely on geometric information of the eye. Feature-based eye track-
ers use features such as eye corners, contours, and reflections to determine
the gaze point. Depending on the model, these approaches need a subject-
specific calibration procedure, multiple (high-resolution) cameras, multiple
lighting sources, and some image feature detectors to have high accuracy.
The other way to predict the gaze point with remote cameras is an
appearance-based approach which only uses the images and no additional
information to learn a mapping between the appearance of the eye and the
gaze point (Liu et al. 2019).
Recently, appearance-based approaches increasingly rely on deep learning
methods, and Convolutional Neural Networks (CNNs) are mainly used to
predict the gaze point (Corcoran and Kar 2017). Using an appearance-
based approach, we find that such eye trackers do not need specific or
additional hardware, and low-resolution images such as those provided by
webcams can be processed while performing sufficiently well for the pur-
poses of detecting broad gazing points.

2 Eye Tracking for Educational Research

For educational research, an eye tracker can be used to analyze how stu-
dents view lecture videos to further improve them by comparing fixation
points and eye movement with the action in the video. In order to gain as
realistic an insight as possible into the learning behavior of students, they
need to be captured in their everyday learning environments and not un-
der laboratory conditions. Thus, it is advisable to outsource the eye track-
ing process to the students’ devices. Given the resultant variations in the
recording conditions on the students’ devices CNN-based eye trackers are
best suited. Thus, input with different lighting conditions, head/eye posi-
tions, etc. can be contemplated in a flexible modelling manner by sufficient
training episodes.
Naturally in adherence with the GDPR any recording must be by informed
consent and is strictly voluntary. The sample may yield selection issues
and those students that participate could follow the lecture more atten-
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tively than they usually would, and this should be considered for further
statistical analysis of the eye tracking data.
Concerning the technical requirements it should be noted that, depending
on the number of participants, there will be a large amount of images to
process and predict the gaze points, which will need considerable compu-
tational capacity and storage. Given only a very limited 2 minute video
sequence used in our setting, we already require roughly 2.7 MB of storage
capacity per student. While training the CNN for the whole sample, we
required a computation time of several days using over a dozen cores. For
larger sample sizes, both in terms of the number of participants and video
duration, we thus are required to select sequences of interest and downsize
the frame numbers used in the analysis.
Despite these challenges, we find that analyzing learners’ activities while
watching lecture videos with CNN-based eye trackers offers a feasible re-
search method that provides deeper insight into the learning process.

3 Preliminary Methodology

3.1 Data

The data used to train the model is self-collected. The dataset contains
pictures of ten students looking at a set of known point on the screen and
the corresponding gaze point on the screen as the target variable. To collect
these pictures, the students were recorded with a laptop webcam with 25
frames per second for 109 seconds yielding a total of 27250 frames for the
dataset. Both for the training phase and the subsequent evaluation phase,
we asked the students to restrict head movement to a minimum and to
leave the lighting conditions unchanged. Furthermore, we also restricted
the screen size to a constant size of W1920 × H1080 pixels for this trial
phase. The dot moved almost continuously over the screen with some jumps
starting at the top left corner.
Last but not least, the recordings were pre-processed with the OpenCV
Cascade Classifiers (Bradski, G. 2000) to find the face and eye regions and
reduce the CNN-input to a W230×H80 pixel image of the eye region.

3.2 Model Architecture

The eye tracker model is displayed in Figure 1. It is a five-layer Convolu-
tional Neural Network with Leaky ReLU as the activation function. The
last layer is a fully connected layer that produces the two-dimensional out-
put. A batch normalization and max pooling layer follow each convolutional
layer.
Given the RGB encoded input picture of the eye regions, the input to the
network is a 3×80×230 dimensional array. The output is a two dimensional
vector entailing the predicted gaze coordinate on the desktop.
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FIGURE 1. Architecture of eye tracking model proposed in this paper

3.3 Model Performance

The network was trained for 1000 epochs with a batch size of 128 and
a learning rate of 0.01 using the Adam optimizer and the MSE loss as
the error function. The data was split into 80% for training and 20% for
testing. To evaluate the model performance not only on the test set, in
which the same students from the train set are covered but on unseen data,
the images of one student were taken out of the dataset before splitting.
Provided that sufficient data for every student is available, we consider it
feasible to calibrate CNNs for every person individually. Given the joint
modelling of nine participants, the network achieves an average error of
around 9.7 pixels on the train set, 44.3 pixels on the test set, and 311.1
pixels for an unseen person on a W1920×H1080 pixels screen.

4 Further Research

4.1 Methodology

For future work and to use the eye tracker for real-life situations where
natural head movement and different lighting conditions should be allowed,
our used dataset and our model will require some adjustments.
On the one hand, the dataset should include images of people in different
lighting conditions and from different angles and distances since the desktop
position can vary a lot depending on the device used. This will also lead
to different image sizes, so we pursue additional pre-processing steps that
allow for the handling of more heterogeneous input images.
On the other hand, more people and more data are needed to train a more
robust network or individualized adjustments are needed. So, the diversity
of how human beings and their eye regions can look should be covered
in the dataset. The GazeCapture dataset could be used for this. It was
introduced by Krafka et al.(2016) and contains data from over 1450 people
with almost 2.5M images.
Additionally, our network should handle situations where the subject does
not look at the screen, e.g., while taking notes, and in general, head move-
ment should be handled. We plan to do this by extending the dataset and
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training a larger and deeper model. This could also be done by additionally
giving the network information about landmark points from the face as Liu
G., Odobez J. and Yu, Y. (2019) did in their paper, but this requires a sec-
ond model which can detect those landmark points. This will also require
more computational capacity, especially in the training phase.
Furthermore, the proposed network was only tested on one desktop. This
could also lead to difficulties when working with different devices and needs
to be researched.
Lastly, instead of using only the eye regions as the input, we will try to
process the whole face image with the expectation that the network learns
different head positions without additional information.

4.2 Further Analysis

In future work, we plan to use the eye tracker for analyzing students learn-
ing behaviors in order to improve lecture videos according to students’
needs and identify the learning strategies of successful students, measuring
success based on their performance on tasks to be solved during and after
the lecture video and their exam grade.
Therefore, we aim to analyze whether students are looking in the areas
we would expect based on the current content, if not, we analyze where
they are looking and whether nudging students’ attention while watching
the videos can improve learning outcomes. Furthermore, we aim to explore
whether their gazing behavior can allow for one of the following two ed-
ucative insights:
If, on the one hand, several students occur to be distracted in the same part
of the lecture, this can be an indication that this part should be revised.
On the other hand, the additional consideration of information from so-
called logfiles may give us insights into the learning process of the students.
In learning management systems such as Moodle and ILIAS, data on user
behavior is stored in these logfiles (Park and Petri 2021). We can gain
information about students’ learning behavior by analyzing how often they
watch the lecture, whether they additionally use the script and, if tasks are
offered, how they solve them after watching the lecture, and compare this
with the eye tracking data.
Finally, with the information about learning behaviors and corresponding
performance on assignments and the exam, we can build a model to predict
the success of other students in future semesters, identify knowledge gaps,
and thus provide appropriate individualized support.

5 Conclusion

In this paper, a CNN model for predicting the gaze point of students in
an educative setting is outlined and underwent a preliminary test. Using



674 Analyzing blended learning education using an eye tracker

such models, we aim to explore the students’ behavior in blended learning
tools to analyze and further the effectiveness of lecture videos for tertiary
education and to further the competencies of future student generations
using the scopes of artificial intelligence.
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Abstract: Public security is a main challenge for Brazilian society, as crime is
a major problem in large Brazilian cities such as São Paulo. An important issue
in this context is to model and predict crime patterns considering historical data
from each particular spatial location. In this work, we evaluate and compare
different prediction models such as spatial autoregressive (SAR) and artificial
neural network models (ANN). For ANN models we use as input data ranging
from population, economic, and education indications to historical data of crimes
in each geolocation. The SAR model takes into account the covariates, as well as
the underlying spatial dependence of the data.

Keywords: Crime modelling; Geo-spatial data; Temporal data.

1 Introduction and Exploratory Analysis

Urban crime is one of the most critical social problems worldwide, be-
ing even more prevalent in Latin America’s big cities. Particularly, in the
metropolitan area of São Paulo, urban crimes vary substantially in intensity
and type of occurrences depending on the characteristics and geolocation
of each city. This scenario demands a systematic investigation of the deter-
minant factors that lead to such variability.
In order to investigate the factors that most impact the intensity and type
of crime over the different cities in metropolitan area of São Paulo, we
build statistical and machine learning models from multiple sources of

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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data. Specifically, crime data were obtained from the open repository of
the São Paulo State Department of Public Safety - Secretaria de Segurança
Pública de São Paulo, 2021, in Portuguese, with data available up until
the year 2021. We combined all types of crimes into a single variable called
“total of crime”, which will be the predictive variable for the models. To
avoid bias due to the population size, we divided the “total of crime” by
the city’s population, generating the “crime per capita” indicator. Figure 1
depicts the distribution of “crime per capita” in the metropolitan area of
the city of São Paulo.

FIGURE 1. Choropleth plot of “crime per capita” in the metropolitan area of the
city of São Paulo. The metropolitan area comprise the cities with the higher crime
rate in the State. The x and y axes show latitudes and longitudes, respectively.

For illustration purposes, Figure 2 shows a correlogram of different types
of crimes in the metropolitan area of São Paulo. It shows that there is a
strong correlation between different types of rape and murder, as well as
a relatively strong correlation between murder, assault, and rape. In this
work, for initial analyses, we considered the total crime per capita in the
metropolitan area of São Paulo.

2 SAR model

The SAR (Spatial Autoregressive) model (see, for instance, Kazar and Celik
2012), also known in the literature as spatial lag model or mixed regressive
model, is an extension of the linear regression model, given by the equation
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FIGURE 2. Correlogram’s plot of different type of crimes in the metropolitan
area of São Paulo.

yi = ρ

n∑
j=1

Wijyj

Q∑
q=1

Xiqβq + ϵi, where (1)

ρ is the spatial autoregression parameter, W is an n-by-n neighborhood
matrix that accounts for the spatial relationships among the spatial data.
ϵi is independently and identically distributed with mean zero and variance
σ2, yi is the dependent variable, Xiq are independent variables, βq is the
coefficient related to Xiq and n is the number of observations. The index
i indicates the n successive observations in the municipality, with data
observed between 2002 to 2017 and Q the number of independent variables.
A derivative-based optimization that can be used in SAR model solution
is Newton-Raphson (root-finding) algorithm. In this algorithm, we need to
compute the first derivative of the log-likelihood function. This gives the
location of optimal solution for ρ parameter. The first derivative of log-
likelihood function is given by the following equation.

∂lnL(y)

∂ρ
= tr((I − ρW )−1 ∂(I − ρW )

∂ρ
))− (2)

n

2
(
−yTMTMWy − yTWTMTMy + 2ρyyTWTMTMWy

yT (I − ρW )TMTM(I − ρW )y
) (3)
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The term M corresponds to [I − X(XTX)−1XT ], where X is the design
matrix that contains the predictive variables.

3 Artificial neural networks

Artificial neural network models are often used for regression or classifica-
tion tasks. This type of model is inspired by the structure and functioning
of the human brain and it uses layers and neurons to transform the infor-
mation into predictions (see, for instance, Hastie, Tibshirani and Friedman
2009).
In this paper, we relied on an ANN whose first layer has 32 units (neurons)
with the ReLU activation function. The second and third layers have 16
units each and they also use ReLU activation. Dropout regularization is
applied after each of the first two dense layers to prevent overfitting. The
output layer has one unit and no activation function, as we are handling
crime prediction as a regression problem. The model’s loss function is the
mean squared error and we use the Adam optimizer with a learning rate
of 0.001. Finally, the model is trained on the normalized training data for
50 epochs with a batch size of 32 and a validation split of 0.2.

4 Application

The data utilized in this study extends beyond the domain of public security
and encompasses various facets such as economy, education, and geographic
information from each city, with a total of 102 available variables. Data
was divided into training and test sets for predicting-focused analysis. The
training data consisted of crimes per capita between 2002 and 2017 with
123,000 observations, while the test data the crimes in 2018 with 7,728
observations. The crime per capita was computed by dividing the total
crime by the population size. To account of certain intrinsic characteristics
of the data, for instance São Paulo and Guarulhos having the highest values
across all variables, a logarithmic function was applied to each variable.
Subsequently, the SAR model was applied to the data, resulting in the find-
ings presented in Table 1. To optimize space, we have used an abbreviated
notation, where X1 denotes the total crime 1m lag, X2 represents the total
crime 2m lag, X3 corresponds to the population, X4 denotes the popula-
tion of age 60+, X5 represents the registration at the municipal pre-school,
X6 denotes the registration at the state elementary school (beginning), X7

represents the registration at the municipal elementary school (final), and
finally, X8 corresponds to the registration of municipal high school.
An artificial neural network model was also fitted. The main difference be-
tween the fitted SAR and ANN covariates lies in the variables used and the
consideration of geographical factors. SAR models utilize variables like ”to-
tal crime 1m lag” and ”total crime 2m lag” as explanatory factors, whereas
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TABLE 1. Fitted SAR model for crimes at the region of greater São Paulo after
applying the logarithmic function to each variable.

Variables and Intercept Estimate Std. Error z value p-value

intercept 3.122 0.153 20.396 <0.001
X1 0.004 0.002 2.670 0.008
X2 0.006 0.001 5.180 <0.001
X3 -0.740 0.028 -26.082 <0.001
X4 0.786 0.027 28.918 <0.001
X5 0.044 0.008 5.785 <0.001
X6 -0.003 0.001 -3.388 0.001
X7 0.008 0.001 10.103 <0.001
X8 -0.014 0.001 -11.437 <0.001
ρ 0.506 <0.001
σ2 0.090

FIGURE 3. Choropleth plot of crime per capita in the metropolitan area of São
Paulo, based on the predicted data.

ANN models exclude those variables. Additionally, ANN models incorpo-
rate the populational density as a covariate to account for geographic influ-
ences. This distinction allows ANN models to capture spatial dependencies
and variations in crime patterns more effectively compared to SAR models.
Based on the test data, the results in Table 2 demonstrate the superior
predicting performance of the ANN model when compared to SAR model
for predicting crimes in the metropolitan area of São Paulo state.
To evaluate the SAR model, a simulation study was conducted by fixing
theoretical values for the fixed coefficients, similar to those estimated for
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TABLE 2. Predictive performance comparison between SAR model and artificial
neural network model.

Measure SAR model Artificial neural network

RMSE 0.3503 0.0016
MAE 0.3022 0.0349

São Paulo crime data, as well as combinations of σ2 ∈ (0.01, 0.1)⊤ and ρ ∈
(0.1, 0.3, 0.7)⊤. The simulation study assessed the bias and mean squared
error of the estimates and allowed verifying an adequate recovery of the
theoretical parameters used, which shows that the SAR model correctly
estimates the regression coefficients. The detailed results will be omitted
here due to space limitations in the abstract.
Finally, based on the artificial neural networks model, a choropleth plot
illustrates the predicted crime per capita in the metropolitan area of São
Paulo (Figure 3).
As depicted in Table 2, the artificial neural network demonstrates superior
predicting performance when compared to the estimated SAR model. How-
ever, it is important to note that, as a regression model, the SAR model can
estimate the relationship between the response variable and the explana-
tory variables, thus providing interpretability to the regression coefficients.
Additionally, the SAR model enables the computation of p-values when
considering the marginal significance of each parameter.
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Abstract: Meanings or senses of a word like ‘bank’ (riverbank or institution)
change over time. The recent DiSC model measures temporal word-sense changes
via careful statistical modelling to quantify uncertainty in the sense-change es-
timates. We introduce EDiSC, an embedded version of DiSC, which combines
word embeddings and DiSC to improve model performance, both in terms of ac-
curacy and sampling efficiency of MCMC methods, via embedded representations
of senses. The resulting model is better adapted to scaling up for larger datasets.
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1 Introduction

Diachronic lexical semantics is the study of temporal meaning change in
languages. Areas of interest include words with multiple meanings or senses,
e.g. ‘mouse’ (a rodent or a computer pointing device). Computational mod-
els of meaning change aid in this study. The recent DiSC model introduced
in Zafar and Nicholls (2022), building on the framework of related earlier
models, represents distinct senses of a target word as distinct distributions
over context words, and sense prevalence as a distribution over senses.
Given a set of unlabelled text snippets, we use careful statistical modelling
to fit the data, predict the target-word sense in each snippet, and obtain
credible intervals for the evolving senses and sense prevalence.
Using analogous ideas to Dieng et al. (2019), we now introduce EDiSC, an
embedded version of DiSC, by combining it with word embeddings, whereby
context words are represented as vectors in an embedding space. This has
two main advantages over DiSC. Firstly, embeddings exploit the wider text
corpus to capture useful semantic information about the context words,
which is otherwise lost if we focus only on the context of a given target

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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word. Secondly, the dimension of the embedding space is typically much
lower than the vocabulary size. These two features lead to, respectively,
improved accuracy and more efficient Monte Carlo sampling as the data
size is scaled up. We demonstrate this on real test cases from English and
ancient Greek as well as synthetic data.

2 Notation and Models

At time t ∈ {1, . . . , T}, target-word sense k ∈ {1, . . . ,K} is represented
as a distribution ψ̃k,t over context words 1, . . . , V , and sense-prevalence
for genre g ∈ {1, . . . , G} is represented as a distribution ϕ̃g,t over senses
1, . . . ,K. Our goal is to infer ψ̃ and ϕ̃ given the data W comprising D
snippets. Each snippet d ∈ {1, . . . , D} is a context of Ld words around
the target word, with genre label γd and time label τd. If true sense labels
o1, . . . , oD are available, we refer to a subset {1′, . . . , D′} as ‘collocates’, i.e.
snippets where a human could identify the sense from context alone.
Both DiSC and EDiSC are generative bag-of-words models, comprising the
same observation model but different prior models. Under the observa-
tion model, each snippet d is generated independently by first sampling
the sense zd|ϕ̃γd,τd ∼ Mult(ϕ̃γd,τd) and then sampling the words given
the sense wd,i|zd, ψ̃zd,τd ∼ Mult(ψ̃zd,τd) independently for each position
i ∈ {i1, . . . , iLd

}.
Under both prior models, probability vectors ψ̃k,t and ϕ̃g,t are soft-
max transforms of real vectors ψk,t and ϕg,t respectively, i.e. ψ̃k,t =

exp(ψk,t)∑V
v=1 exp(ψk,t

v )
and ϕ̃g,t = exp(ϕg,t)∑K

k=1 exp(ϕg,t
k )

. The prior on ϕg,t, for each g, is

an AR(1) time series with stationary distribution N
(

0,diag
(

κϕ

1−(αϕ)2

))
.

Under DiSC, ψk,t = χk + θt, with a N (0,diag(κχ)) prior on χk and an

AR(1) prior on θt with stationary distribution N
(

0,diag
(

κθ

1−(αθ)2

))
. In

contrast, under EDiSC, we now define ψk,t = ρξk,t+ ς, where ρ is a V ×M
matrix of context-word embeddings learnt using GloVe (Pennington 2014),
ξk,t is an M -dimensional sense-time embedding, and ς is a V -dimensional
bias or correction parameter with prior N (0,diag(κς)). ξ is decomposed as
ξk,t = χk + θt, where χk and θt are M -dimensional sense and time embed-
dings respectively. We place priors on χk and θt, functionally the same as
in DiSC, whilst noting that these are now vectors in the M -dimensional
embedding space rather than the larger V -dimensional space in DiSC. The
full EDiSC generative model is given in Table 1.

3 Data and Evaluation

We have a simple test case from COHA (Davies 2010) annotated by Zafar
and Nicholls (2022):



Zafar and Nicholls 683

TABLE 1. EDiSC generative model

—————————————– PRIOR MODEL —————————————–
1 get word embeddings matrix ρ
2 fix hyperparameters κϕ, κθ, κχ, κς , αϕ, αθ (with |αϕ| < 1, |αθ| < 1)
3 draw bias or correction parameter ς|κς ∼ N (0,diag(κς))
4 initialise at time t = 1
5 for genre g ∈ 1 : G do

6 draw sense prevalence parameter ϕg,1|κϕ, αϕ ∼ N
(

0,diag
(

κϕ

1−(αϕ)2

))
7 end for

8 draw time embedding θ1|κθ, αθ ∼ N
(

0,diag
(

κθ

1−(αθ)2

))
9 for time t ∈ 2 : T do

10 for genre g ∈ 1 : G do
11 draw sense prevalence parameter ϕg,t|ϕg,t−1, κϕ, αϕ ∼ N

(
αϕϕ

g,t−1,diag(κϕ)
)

12 end for
13 draw time embedding θt|θt−1, κθ, αθ ∼ N

(
αθθ

t−1,diag(κθ)
)

14 end for
15 for sense k ∈ 1 : K do
16 draw sense embedding χk|κχ ∼ N (0,diag(κχ))
17 end for
18 for sense k ∈ 1 : K and time t ∈ 1 : T do
19 set sense-time embedding ξk,t = χk + θt

20 set context-word probability parameter ψk,t = ρξk,t + ς
21 end for

22 transform ϕ and ψ into probabilities ϕ̃ and ψ̃ using softmax
———————————– OBSERVATION MODEL ———————————–

23 fix probabilities of drawing stopwords qSW and uninformative words qU

24 for snippet d ∈ 1 : D do
25 draw number of context words Ld|L, qSW, qU ∼ Bin(L, 1− qSW − qU)
26 draw a random subset {i1, . . . , iLd

} of size Ld from {1, . . . , L}
27 draw sense assignment zd|ϕ̃γd,τd ∼ Mult

(
ϕ̃γd,τd1 , . . . , ϕ̃γd,τdK

)
28 for context position i ∈ {i1, . . . , iLd

} do
29 draw context word wd,i|zd, ψ̃zd,τd ∼ Mult

(
ψ̃zd,τd1 , . . . , ψ̃zd,τdV

)
30 end for
31 end for

‘bank’ (riverbank or institution) [D = 3 685, D′ = 3 525, V = 973,K = 2,
G = 1, T = 10]; and three more challenging test cases from ancient Greek
(Vatri et al. 2018, 2019): ‘kosmos’ (decoration, order, world) [D = 1 469,
D′ = 1 144, V = 2 904,K = 3, G = 2, T = 9], ‘mus’ (mouse, mus-
cle, mussel) [D = 214, D′ = 118, V = 899,K = 3, G = 2, T = 9],
and ‘harmonia’ (abstract, concrete, musical) [D = 653, D′ = 451,
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V = 1 607,K = 3, G = 2,T = 12].
The model posteriors are defined by π(ϕ, ψ|W ) ∝ π(ϕ)π(ψ)p(W |ϕ, ψ),

where the likelihood p(W |ϕ, ψ) =
∏D
d=1

∑K
k=1 ϕ̃

γd,τd
k

∏iLd
i=i1

ψ̃k,τdwd,i
is com-

mon to both DiSC and EDiSC, since the models differ only in the prior
structure for ψ. We infer the posteriors ϕ, ψ|W using MCMC with HMC
and MALA sampling.
Given true sense labels o for the collocates, we assess model predictive accu-

racy using the Brier score BS = 1
D

∑D′

d=1′
∑K
k=1 (p̂(zd = k)− I(od = k))

2
,

a proper scoring rule for multi-category probabilistic predictions p̂(zd = k),
ranging from 0 (best) to 2 (worst). Here, p̂(zd = k) is the estimated value of

Eϕ,ψ|W
(
p(zd = k|Wd, ϕ, ψ)

)
computed by normalising ϕ̃γd,τdzd

∏iLd
i=i1

ψ̃zd,τdwd,i

over zd ∈ {1, . . . ,K} using the MCMC output. Table 2 shows the Brier
scores for DiSC and EDiSC. In the case of ‘bank’, ‘kosmos’ and ‘mus’,
EDiSC with an appropriately chosen embedding dimension M offers a clear
improvement over DiSC. However, for ‘harmonia’, both models fail to con-
verge to any meaningful senses.
Table 2 also shows the WAIC (Watanabe 2010, Vehtari et al. 2017) for the
different models and data. In general, when the true labels are not available,
we can select the model that minimises the WAIC. In our experiments,
using the WAIC for model selection results in the optimal or near-optimal
model based on Brier scores.

TABLE 2. Brier scores and WAIC for test data using different models

‘bank’ ‘kosmos’ ‘mus’
BS WAIC BS WAIC BS WAIC

DiSC 0.150 154782 0.371 138869 0.204 20058
EDiSC (M = 50) 0.140 154682 0.352 137243 0.135 19434
EDiSC (M = 100) 0.139 154440 0.327 136866 0.093 19417
EDiSC (M = 200) 0.133 154165 0.332 136510 0.099 19450

We assess true-model recovery. True sense-prevalence is unknown. However,
we can use independent well-informed estimates ϕ̃|(z = o) of the ground
truth given the labelled data od, d ∈ {1, . . . , D} for assessment. Model pos-
teriors ϕ̃|W given the unlabelled data W are compared against these inde-
pendent estimates of the ground truth. Figure 1 shows the comparison for
‘kosmos’. Whilst both models perform well, EDiSC generally does better:
the EDiSC ϕ̃|W HPD intervals (blue bars) have higher overlap with the
ϕ̃|(z = o) HPD intervals (dashed bars) compared to DiSC (red bars), indi-
cating better ground truth recovery, and the EDiSC posterior means (blue
circles) are also generally closer to the ϕ̃|(z = o) posterior means (black
circles). We see similar results for the other test cases.
We assess the MCMC sampling efficiency for DiSC and EDiSC on the
‘bank’ data, using the effective sample size (ESS) per hour of CPU time
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FIGURE 1. ‘Kosmos’ 95% HPD intervals (error bars) and posterior means (cir-
cles). Empirical sense prevalence (coloured bars) also shown for interest.

TABLE 3. Median ESS per hour of CPU time from MALA MCMC sampling

Model Burn-in* (sims) ESS for ϕ̃ ESS for ψ̃

DiSC 700 375 391
EDiSC (M = 50) 100 1,916 391
EDiSC (M = 100) 250 2,192 344
EDiSC (M = 200) 500 2,237 303

* Defined as the approximate MCMC sample after which the trace plots
for the variables of interest appear flat

as the metric. We see that, whilst the ESS for ψ̃ is of the same order, the
ESS for ϕ̃ is many times better under EDiSC than under DiSC. EDiSC also
benefits from smaller burn-in times. Table 3 shows the results.
Finally, using synthetic data experiments, we see in Figure 2 that, for vocab-
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ulary V > 500 (which is typical), MCMC run times increase with snippets
D much more slowly for EDiSC than for DiSC. Thus, EDiSC is a lot better
suited than DiSC to scaling up for larger and more complex data.
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FIGURE 2. Mean run times in CPU seconds for 500 MCMC samples on synthetic
data using different models, vocabulary sizes (V ) and number of snippets (D)
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Abstract: We extend the concept of overlap coefficient, and its conditional
counterpart, to the case where there are three disease stages. We propose to
estimate the covariate-specific overlap coefficient using a Bayesian nonparamet-
ric covariate-dependent mixture model that relies on a logit stick-breaking prior
formulation. Our methods are motivated by an application to the diagnosis of
Alzheimer’s disease where the goal is to study how the accuracy of a poten-
tial biomarker for distinguishing between subjects with normal cognition, mild
cognitive impairment, and dementia, changes with age.
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1 Introduction

Evaluating the performance of diagnostic tests is of great importance in
public health, clinical practice, and medical research. Before a diagnostic
marker is approved for use in clinical practice, its ability of making diag-
nostic classification must be rigorously assessed through statistical analysis.
In the two-class case, the major goal of a diagnostic marker is to classify
subjects into a diseased or a nondiseased group. However, an intermedi-
ate transitional stage usually exists prior to disease onset in the process
of several diseases, which is especially true for neurological disorders. Tra-
ditional summary measures of the diagnostic accuracy in the three-class
setting, such as the volume under the ROC surface and the Youden index,
assume an order between the three classes and their respective conditional
counterparts, assume that the same order is maintained across all covari-
ates levels, which may not hold in practice. In this work, we extend the

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).



688 BNP estimation of the three class covariate-specific overlap coefficient

concept of overlap coefficient to the three-class disease case. In this set-
ting, the overlap coefficient is defined as the proportion of area between
the three density functions in each disease stage group. An advantage of
the overlap coefficient over the volume under the surface and the Youden
index, besides its intuitive interpretation, is that in addition of taking into
account both the location and shape of the distributions of test outcomes in
the two populations, it is ’non-directional‘, meaning that it does not need
to assume an order between the three disease classes. We further propose
a flexible Bayesian model for estimating the three-class covariate-specific
overlap coefficient that relies on estimating the conditional density in each
group using a covariate-dependent mixture model that relies on a logit
stick-breaking prior for the mixing measure. The resulting model is widely
applicable to a wide range of continuous diagnostic tests and for a wide
range of diseases.

2 Bayesian nonparametric inference for the
three-class covariate-specific overlap coefficient

Covariates (e.g.,age and gender) can impact the performance of a diagnos-
tic test and ignoring covariate information may lead to erroneous infer-
ences about a test’s accuracy, and therefore a covariate-dependent struc-
ture should be included when modelling the overlap coefficient. Let Y1, Y2,
and Y3 be three independent continuous random variables representing the
diagnostic test outcomes in the normal cognition, mild impairment, and
dementia group, with covariate vectors X1, X2, and X3. For a given co-
variate vector value x, the covariate-specific overlap coefficient is defined
as:

OVL(x) =

∫ +∞

−∞
min {f1(y | X1 = x), f2(y | X2 = x), f3(y | X3 = x)} dy,

(1)
where fd(y | x) denotes the conditional (on x) density of Yd, for d ∈
{1, 2, 3}. Using the well known formula min{u, v} = 1

2 (u + v) − 1
2 |u + v|,

the OVL expression in (1) can be shown to be equivalent to

OVL(x) =1− 1

4

∫ +∞

−∞
|f1(y | x)− f2(y | x)|+ |f1(y | x) + f2(y | x)−

|f1(y | x)− f2(y | x)| − 2f3(y | x)|dy. (2)

When there is a complete overlap of the distributions of test outcomes
in the three groups, thus corresponding to a useless diagnostic test, the
overlap coefficient takes the value zero. On the other extreme case, when
the three distributions are completely separated, the overlap coefficient
is equal to one. Values between zero and one correspond to different de-
grees of overlap between the distributions of the test outcomes in the three
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groups. Essentially, accurately estimating the covariate-specific overlap co-
efficient reduces to accurately estimate the conditional density function of
the marker in each of the three disease groups. Within the Bayesian non-
parametric framework, we consider the general class of covariate-dependent
infinite mixture of normals model

fd(y | x) =

∞∑
l=1

ωl(x)ϕ(y|θl(x)), d ∈ {1, 2, 3}, (3)

where the mixing weights follow a a stick-breaking construction, i.e.,
ω1(x) = v1(x), ωl(x) = vl(x)

∏l−1
m=1(1 − vm(x)) for l ≥ 2. Popular par-

ticular cases, mainly due to computational simplicity, of the model specifi-
cation in (3) include the single-weights model (ωl(x) = ωl) and the single-
atoms model (θl(x) = θl). However, the covariate-independent assump-
tion for the mixing weights or the atoms might have limited flexibility in
practice. With this in mind, we follow the logit stick-breaking prior for-
mulation, recently proposed by Rigon and Durante (2021), which retains
the computational simplicity but affords the necessary flexibility needed
in many applications. Specifically, let θl(x) = (µl(x), σ2

l ), where µl(x) is
modelled as a linear combination of selected functions of the covariates
λ(x) = {λ1(x), . . . , λM (x)}T , thus leading to

µl(x) = λ(x)Tβl

A logit stick-breaking prior for the weights is employed, which is represented
by a sequence of logistic regressions:

ηl(x) = logit(vl(x)) = ψ(x)Tαl

where ψ(x) = {ψ1(x), . . . , ψR(x)}T are selected functions of the observed
covariates. Note that ηl(x) is interpreted as the log-odds of being allocated
to component l in the continuation-ratio parameterization, conditionally
on the event of surviving to the first (1, . . . , l− 1) components. In practice,
the infinite mixture in (3) is truncated to a finite number of components,
say L, which shall be regarded as an upper bound on the number of occu-
pied components. To complete the model specification, we should set prior
distributions for the model parameters. For conjugacy reasons, we let

αl ∼ NR(µα,Σα), βl ∼ NM (µβ ,Σβ), σ2
l ∼ IG(aσ2 , bσ2),

where IG(a, b) represents an inverse-gamma distribution with shape pa-
rameter a and rate parameter b. It is worth mentioning that Pólya-gamma
data augmentation scheme (Polson et al., 2013) should be adapted to solve
the difficulty of Bayesian inference in logistic regression, in order to get
the full posterior conditional distributions of each αl in Gibbs sampling.
For a detailed model specification and justification, please see Rigon and
Durante (2021). Based on the estimated conditional densities, the integral
in (2) can be approximated numerically by the trapezoidal rule.
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3 Application

Our methods are motivated and applied to a dataset derived from the
Alzheimer’s Disease Neuroimaging Initiative. The dataset consistes of 1032
subjects, with 313 subjects in the cognitively normal group, 581 subjects in
the mild cognitive impairment group, and 138 subjects in the Alzheimer’s
disease group. We aim to evaluate the age and gender effect on the ac-
curacy’s performance, as measured by the overlap coefficient, of the hy-
pometabolic convergence index (HCI) to distinguish (simultaneously) be-
tween the three groups
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FIGURE 1. Posterior mean and 95% credible intervals for the age and gender
specific overlap coefficient.

In Figure 1 we show the estimated age and gender specific overlap coeffi-
cient. We can see that the overlap coefficient generally increases with age
for both genders, and the overlap coefficient of females is generally lower
than that of males of the same age. Our results seem then to suggest that
the diagnostic accuracy of HCI to simultaneously distinguish between sub-
jects with normal cognition, mild impairment, and dementia decreases as
age increases and its performance is slightly better for females than males.
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